rectangular function

{{Short description|Function whose graph is 0, then 1, then 0 again, in an almost-everywhere continuous way}}

{{Redirect|Box function|the Conway box function|Minkowski's question-mark function#Conway box function}}

{{Use American English|date = March 2019}}

Image:Rectangular function.svg

The rectangular function (also known as the rectangle function, rect function, Pi function, Heaviside Pi function,{{cite web |url=https://reference.wolfram.com/language/ref/HeavisidePi.html |title=HeavisidePi, Wolfram Language function |author=Wolfram Research |date=2008 |access-date=October 11, 2022}} gate function, unit pulse, or the normalized boxcar function) is defined as{{MathWorld |title=Rectangle Function |id=RectangleFunction}}

\operatorname{rect}\left(\frac{t}{a}\right) = \Pi\left(\frac{t}{a}\right) =

\left\{\begin{array}{rl}

0, & \text{if } |t| > \frac{a}{2} \\

\frac{1}{2}, & \text{if } |t| = \frac{a}{2} \\

1, & \text{if } |t| < \frac{a}{2}.

\end{array}\right.

Alternative definitions of the function define \operatorname{rect}\left(\pm\frac{1}{2}\right) to be 0,{{Cite book |last=Wang |first=Ruye |title=Introduction to Orthogonal Transforms: With Applications in Data Processing and Analysis |pages=135–136 |publisher=Cambridge University Press |year=2012 |url=https://books.google.com/books?id=4KEKGjaiJn0C&pg=PA135 |isbn=9780521516884 }} 1,{{Cite book |last=Tang |first=K. T. |title=Mathematical Methods for Engineers and Scientists: Fourier analysis, partial differential equations and variational models |page=85 |publisher=Springer |year=2007 |url=https://books.google.com/books?id=gG-ybR3uIGsC&pg=PA85 |isbn=9783540446958 }}{{Cite book |last=Kumar |first=A. Anand |title=Signals and Systems |publisher=PHI Learning Pvt. Ltd. |pages=258–260 |url=https://books.google.com/books?id=FGGa6BXhy3kC&pg=PA258 |isbn=9788120343108 |year=2011 }} or undefined.

Its periodic version is called a rectangular wave.

History

The rect function has been introduced 1953 by Woodward{{Cite journal |last=Klauder |first=John R |title=The Theory and Design of Chirp Radars |pages=745–808 |journal=Bell System Technical Journal |year=1960 |volume=39 |issue=4 |doi=10.1002/j.1538-7305.1960.tb03942.x |url=https://ieeexplore.ieee.org/document/6773600 |url-access=subscription }} in "Probability and Information Theory, with Applications to Radar"{{Cite book |last=Woodward |first=Philipp M |title=Probability and Information Theory, with Applications to Radar |publisher=Pergamon Press |pages=29 |year=1953 }} as an ideal cutout operator, together with the sinc function{{Cite book |last=Higgins |first=John Rowland |title=Sampling Theory in Fourier and Signal Analysis: Foundations |pages=4 |publisher=Oxford University Press Inc. |year=1996 |isbn=0198596995 }}{{Cite book |last=Zayed |first=Ahmed I |title=Handbook of Function and Generalized Function Transformations |pages=507 |publisher=CRC Press |year=1996 |isbn=9780849380761 }} as an ideal interpolation operator, and their counter operations which are sampling (comb operator) and replicating (rep operator), respectively.

Relation to the boxcar function

The rectangular function is a special case of the more general boxcar function:

\operatorname{rect}\left(\frac{t-X}{Y} \right) = H(t - (X - Y/2)) - H(t - (X + Y/2)) = H(t - X + Y/2) - H(t - X - Y/2)

where H(x) is the Heaviside step function; the function is centered at X and has duration Y, from X-Y/2 to X+Y/2.

Fourier transform of the rectangular function

File:Sinc_function_(normalized).svg

The unitary Fourier transforms of the rectangular function are

\int_{-\infty}^\infty \operatorname{rect}(t)\cdot e^{-i 2\pi f t} \, dt

=\frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(\pi f) =\operatorname{sinc}_\pi(f),

using ordinary frequency {{mvar|f}}, where \operatorname{sinc}_\pi is the normalized formWolfram MathWorld, https://mathworld.wolfram.com/SincFunction.html of the sinc function and

\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \operatorname{rect}(t)\cdot e^{-i \omega t} \, dt

=\frac{1}{\sqrt{2\pi}}\cdot \frac{\sin\left(\omega/2 \right)}{\omega/2}

=\frac{1}{\sqrt{2\pi}} \cdot \operatorname{sinc}\left(\omega/2 \right),

using angular frequency \omega, where \operatorname{sinc} is the unnormalized form of the sinc function.

For \operatorname{rect} (x/a), its Fourier transform is\int_{-\infty}^\infty \operatorname{rect}\left(\frac{t}{a}\right)\cdot e^{-i 2\pi f t} \, dt

=a \frac{\sin(\pi af)}{\pi af} = a\ \operatorname{sinc}_\pi{(a f)}.

Relation to the triangular function

We can define the triangular function as the convolution of two rectangular functions:

\operatorname{tri(t/T)} = \operatorname{rect(2t/T)} * \operatorname{rect(2t/T)}.\,

Use in probability

{{Main |Uniform distribution (continuous)}}

Viewing the rectangular function as a probability density function, it is a special case of the continuous uniform distribution with a = -1/2, b = 1/2. The characteristic function is

\varphi(k) = \frac{\sin(k/2)}{k/2},

and its moment-generating function is

M(k) = \frac{\sinh(k/2)}{k/2},

where \sinh(t) is the hyperbolic sine function.

Rational approximation

The pulse function may also be expressed as a limit of a rational function:

\Pi(t) = \lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1}.

=Demonstration of validity=

First, we consider the case where |t|<\frac{1}{2}. Notice that the term (2t)^{2n} is always positive for integer n. However, 2t<1 and hence (2t)^{2n} approaches zero for large n.

It follows that:

\lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \frac{1}{0+1} = 1, |t|<\tfrac{1}{2}.

Second, we consider the case where |t|>\frac{1}{2}. Notice that the term (2t)^{2n} is always positive for integer n. However, 2t>1 and hence (2t)^{2n} grows very large for large n.

It follows that:

\lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \frac{1}{+\infty+1} = 0, |t|>\tfrac{1}{2}.

Third, we consider the case where |t| = \frac{1}{2}. We may simply substitute in our equation:

\lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{1^{2n}+1} = \frac{1}{1+1} = \tfrac{1}{2}.

We see that it satisfies the definition of the pulse function. Therefore,

\operatorname{rect}(t) = \Pi(t) = \lim_{n\rightarrow \infty, n\in \mathbb(Z)} \frac{1}{(2t)^{2n}+1} = \begin{cases}

0 & \mbox{if } |t| > \frac{1}{2} \\

\frac{1}{2} & \mbox{if } |t| = \frac{1}{2} \\

1 & \mbox{if } |t| < \frac{1}{2}. \\

\end{cases}

Dirac delta function

The rectangle function can be used to represent the Dirac delta function \delta (x).{{Cite book |last1=Khare |first1=Kedar |title=Fourier Optics and Computational Imaging |last2=Butola |first2=Mansi |last3=Rajora |first3=Sunaina |publisher=Springer |year=2023 |isbn=978-3-031-18353-9 |edition=2nd |pages=15–16 |chapter=Chapter 2.4 Sampling by Averaging, Distributions and Delta Function |doi=10.1007/978-3-031-18353-9}} Specifically,\delta (x) = \lim_{a \to 0} \frac{1}{a}\operatorname{rect}\left(\frac{x}{a}\right).For a function g(x), its average over the width a around 0 in the function domain is calculated as,

g_{avg}(0) = \frac{1}{a} \int\limits_{- \infty}^{\infty} dx\ g(x) \operatorname{rect}\left(\frac{x}{a}\right).

To obtain g(0), the following limit is applied,

g(0) = \lim_{a \to 0} \frac{1}{a} \int\limits_{- \infty}^{\infty} dx\ g(x) \operatorname{rect}\left(\frac{x}{a}\right)

and this can be written in terms of the Dirac delta function as,

g(0) = \int\limits_{- \infty}^{\infty} dx\ g(x) \delta (x).The Fourier transform of the Dirac delta function \delta (t) is

\delta (f)

= \int_{-\infty}^\infty \delta (t) \cdot e^{-i 2\pi f t} \, dt

= \lim_{a \to 0} \frac{1}{a} \int_{-\infty}^\infty \operatorname{rect}\left(\frac{t}{a}\right)\cdot e^{-i 2\pi f t} \, dt

= \lim_{a \to 0} \operatorname{sinc}{(a f)}.

where the sinc function here is the normalized sinc function. Because the first zero of the sinc function is at f = 1 / a and a goes to infinity, the Fourier transform of \delta (t) is

\delta (f) = 1,

means that the frequency spectrum of the Dirac delta function is infinitely broad. As a pulse is shorten in time, it is larger in spectrum.

See also

References

{{Reflist}}

{{DEFAULTSORT:Rectangular Function}}

Category:Special functions