relaxed intersection

The relaxed intersection of m sets corresponds to the classical

intersection between sets except that it is allowed to relax few sets in order to avoid an empty intersection.

This notion can be used to solve constraints satisfaction problems

that are inconsistent by relaxing a small number of constraints.

When a bounded-error approach is considered for parameter estimation,

the relaxed intersection makes it possible to be robust with respect

to some outliers.

Definition

The q-relaxed intersection of the m subsets

X_{1},\dots ,X_{m}

of R^{n},

denoted by

X^{\{q\}}=\bigcap^{\{q\}}X_{i}

is the set of all

x \in R^{n}

which belong to all

X_{i}

's, except

q

at most.

This definition is illustrated by Figure 1.

File:Wiki q inter def.jpg

Define

\lambda (x) =\text{card} \left\{ i\ |\ x\in X_{i}\right\}.

We have

X^{\{q\}}=\lambda ^{-1}([m-q,m]) .

Characterizing the q-relaxed intersection is a thus a set inversion problem.

{{cite book|last1=Jaulin|first1=L.|last2=Walter|first2=E.|last3=Didrit|first3=O.|

title= Guaranteed robust nonlinear parameter bounding|

year=1996|publisher=In Proceedings of CESA'96 IMACS Multiconference (Symposium on Modelling, Analysis and Simulation)|

url=http://www.ensta-bretagne.fr/jaulin/paper_CESA96.pdf}}

Example

Consider 8 intervals:

X_{1}=[1,4],

X_{2}=\ [2,4],

X_{3}=[2,7],

X_{4}=[6,9],

X_{5}=[3,4],

X_{6}=[3,7].

We have

X^{\{0\}} = \emptyset,

X^{\{1\}}=[3,4],

X^{\{2\}}=[3,4],

X^{\{3\}}=[2,4] \cup [6,7],

X^{\{4\}}=[2,7],

X^{\{5\}}=[1,9],

X^{\{6\}}=]-\infty ,\infty [.

Relaxed intersection of intervals

The relaxed intersection of intervals is not necessary an interval. We thus take

the interval hull of the result. If X_i's are intervals, the relaxed

intersection can be computed with a complexity of m.log(m) by using the

Marzullo's algorithm. It suffices to

sort all lower and upper bounds of the m intervals to represent the

function \lambda . Then, we easily get the set

X^{\{q\}}=\lambda^{-1}([m-q,m])

which corresponds to a union of intervals.

We then return the

smallest interval which contains this union.

Figure 2 shows the function

\lambda(x)

associated to the previous example.

File:Wiki qinter intervals.jpg

Relaxed intersection of boxes

To compute the q-relaxed intersection of m boxes of

R^{n}, we project all m boxes with respect to the n axes.

For each of the n groups of m intervals, we compute the q-relaxed intersection.

We return Cartesian product of the n resulting intervals.

{{cite journal|last1=Jaulin|first1=L.|last2=Walter|first2=E.|

title=Guaranteed robust nonlinear minimax estimation|

journal=IEEE Transactions on Automatic Control|

year=2002|volume=47|issue=11 |pages=1857–1864 |doi=10.1109/TAC.2002.804479 |

url=http://www.ensta-bretagne.fr/jaulin/paper_qminimax.pdf}}

Figure 3 provides an

illustration of the 4-relaxed intersection of 6 boxes. Each point of the

red box belongs to 4 of the 6 boxes.

File:Wiki q inter 6box.jpg

Relaxed union

The q-relaxed union of X_1,\dots ,X_m is defined by

\overset{\{q\}}{\bigcup}X_{i}=\bigcap^{\{m-1-q\}}X_i

Note that when q=0, the relaxed union/intersection corresponds to

the classical union/intersection. More precisely, we have

\bigcap^{\{0\}}X_{i} =\bigcap X_i

and

\overset{\{0\} }{\bigcup}X_{i} =\bigcup X_i

De Morgan's law

If \overline{X} denotes the complementary set of X_i, we have

\overline{\bigcap^{\{q\}}X_i} = \overset{\{q\}}{\bigcup}\overline{X_i}

\overline{\overset{\{q\} }{\bigcup }X_i}=\bigcap^{\{q\}}\overline{X_i}.

As a consequence

\overline{\bigcap\limits^{\{q\}}X_i}=\overline{\overset{\{m-q-1\} }{\bigcup }X_i}=\bigcap^{\{m-q-1\}}\overline{X_i}

Relaxation of contractors

Let C_1,\dots ,C_m be m contractors for the sets X_1,\dots ,X_m ,

then

C([x]) =\bigcap^{\{q\}}C_i([x]).

is a contractor for X^{\{q\}}

and

\overline{C}([x]) =\bigcap^{\{m-q-1\}}\overline{C}_i([x])

is a contractor for \overline{X}^{\{q\}}, where

\overline{C}_1,\dots,\overline{C}_{m}

are contractors for

\overline{X}_1,\dots ,\overline{X}_m.

Combined with a branch-and-bound algorithm such as SIVIA (Set Inversion Via Interval Analysis), the q-relaxed

intersection of m subsets of R^{n} can be computed.

Application to bounded-error estimation

The q-relaxed intersection can be used for robust localization

{{cite book|last1=Kieffer|first1=M.|last2=Walter|first2=E.|

title= Guaranteed characterization of exact non-asymptotic confidence regions in nonlinear parameter estimation|

year=2013|publisher=In Proceedings of IFAC Symposium on Nonlinear Control Systems, Toulouse : France (2013)|

url=http://hal-supelec.archives-ouvertes.fr/docs/00/81/94/88/PDF/Nolcos2013_KW.pdf}}

{{cite journal|last1=Drevelle|first1=V.|last2=Bonnifait|first2=Ph.|

title=A set-membership approach for high integrity height-aided satellite positioning|

journal=GPS Solutions|year=2011|volume=15|issue=4|pages=357–368 |doi=10.1007/s10291-010-0195-3 |bibcode=2011GPSS...15..357D |s2cid=121728552 |url=http://hal.archives-ouvertes.fr/hal-00608133/en/}}

or for tracking.

{{cite journal|last1=Langerwisch|first1=M.|last2=Wagner|first2=B.|

title=Guaranteed Mobile Robot Tracking Using Robust Interval Constraint Propagation|

journal=Intelligent Robotics and Applications|

year=2012}}.

Robust observers can also be implemented using the relaxed intersections to be robust with respect to outliers.

{{cite journal|last=Jaulin|first=L.|

title=Robust set membership state estimation; Application to Underwater Robotics|

journal=Automatica|

year=2009|volume=45|

url=http://www.ensta-bretagne.fr/jaulin/paper_sauce_automatica.pdf|

doi=10.1016/j.automatica.2008.06.013|pages=202–206}}

We propose here a simple example

{{cite journal|last1=Jaulin|first1=L.|last2=Kieffer|first2=M.|last3=Walter|first3=E.|last4=Meizel|first4=D.|title=Guaranteed robust nonlinear estimation with application to robot localization |journal=IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews |year=2002|volume=32|issue=4 |pages=374–381 |url=http://www.ensta-bretagne.fr/jaulin/robab.pdf|url-status=dead|archiveurl=https://web.archive.org/web/20110428224956/http://www.ensta-bretagne.fr/jaulin/robab.pdf|archivedate=2011-04-28 |doi=10.1109/TSMCC.2002.806747|s2cid=17436801 }}

to illustrate the method.

Consider a model the ith model output of which is given by

f_i(p)=\frac{1}{\sqrt{2\pi p_2}}\exp (-\frac{(t_i-p_1)^{2}}{2p_2})

where p\in R^{2}. Assume that we have

f_i(p) \in [y_i]

where t_i and [y_i] are given by the following list

\{ (1,[0;0.2]),(2,[0.3;2]),(3,[0.3;2]),(4,[0.1;0.2]),(5,[0.4;2]),(6,[-1;0.1]) \}

The sets \lambda^{-1}(q) for different q are depicted on

Figure 4.

File:Wiki qinter robab.jpg

References