relaxed intersection
The relaxed intersection of m sets corresponds to the classical
intersection between sets except that it is allowed to relax few sets in order to avoid an empty intersection.
This notion can be used to solve constraints satisfaction problems
that are inconsistent by relaxing a small number of constraints.
When a bounded-error approach is considered for parameter estimation,
the relaxed intersection makes it possible to be robust with respect
to some outliers.
Definition
The q-relaxed intersection of the m subsets
of ,
denoted by
X^{\{q\}}=\bigcap^{\{q\}}X_{i}
is the set of all
x \in R^{n}
which belong to all
X_{i}
's, except
at most.
This definition is illustrated by Figure 1.
Define
\lambda (x) =\text{card} \left\{ i\ |\ x\in X_{i}\right\}.
We have
X^{\{q\}}=\lambda ^{-1}([m-q,m]) .
Characterizing the q-relaxed intersection is a thus a set inversion problem.
{{cite book|last1=Jaulin|first1=L.|last2=Walter|first2=E.|last3=Didrit|first3=O.|
title= Guaranteed robust nonlinear parameter bounding|
year=1996|publisher=In Proceedings of CESA'96 IMACS Multiconference (Symposium on Modelling, Analysis and Simulation)|
url=http://www.ensta-bretagne.fr/jaulin/paper_CESA96.pdf}}
Example
Consider 8 intervals:
X_{1}=[1,4],
X_{2}=\ [2,4],
X_{3}=[2,7],
X_{4}=[6,9],
X_{5}=[3,4],
X_{6}=[3,7].
We have
X^{\{0\}} = \emptyset,
X^{\{1\}}=[3,4],
X^{\{2\}}=[3,4],
X^{\{3\}}=[2,4] \cup [6,7],
X^{\{4\}}=[2,7],
X^{\{5\}}=[1,9],
X^{\{6\}}=]-\infty ,\infty [.
Relaxed intersection of intervals
The relaxed intersection of intervals is not necessary an interval. We thus take
the interval hull of the result. If 's are intervals, the relaxed
intersection can be computed with a complexity of m.log(m) by using the
Marzullo's algorithm. It suffices to
sort all lower and upper bounds of the m intervals to represent the
function . Then, we easily get the set
X^{\{q\}}=\lambda^{-1}([m-q,m])
which corresponds to a union of intervals.
We then return the
smallest interval which contains this union.
Figure 2 shows the function
associated to the previous example.
Relaxed intersection of boxes
To compute the q-relaxed intersection of m boxes of
, we project all m boxes with respect to the n axes.
For each of the n groups of m intervals, we compute the q-relaxed intersection.
We return Cartesian product of the n resulting intervals.
{{cite journal|last1=Jaulin|first1=L.|last2=Walter|first2=E.|
title=Guaranteed robust nonlinear minimax estimation|
journal=IEEE Transactions on Automatic Control|
year=2002|volume=47|issue=11 |pages=1857–1864 |doi=10.1109/TAC.2002.804479 |
url=http://www.ensta-bretagne.fr/jaulin/paper_qminimax.pdf}}
Figure 3 provides an
illustration of the 4-relaxed intersection of 6 boxes. Each point of the
red box belongs to 4 of the 6 boxes.
Relaxed union
The q-relaxed union of is defined by
\overset{\{q\}}{\bigcup}X_{i}=\bigcap^{\{m-1-q\}}X_i
Note that when q=0, the relaxed union/intersection corresponds to
the classical union/intersection. More precisely, we have
\bigcap^{\{0\}}X_{i} =\bigcap X_i
and
\overset{\{0\} }{\bigcup}X_{i} =\bigcup X_i
De Morgan's law
If denotes the complementary set of , we have
\overline{\bigcap^{\{q\}}X_i} = \overset{\{q\}}{\bigcup}\overline{X_i}
\overline{\overset{\{q\} }{\bigcup }X_i}=\bigcap^{\{q\}}\overline{X_i}.
As a consequence
\overline{\bigcap\limits^{\{q\}}X_i}=\overline{\overset{\{m-q-1\} }{\bigcup }X_i}=\bigcap^{\{m-q-1\}}\overline{X_i}
Relaxation of contractors
Let be m contractors for the sets ,
then
C([x]) =\bigcap^{\{q\}}C_i([x]).
is a contractor for
and
\overline{C}([x]) =\bigcap^{\{m-q-1\}}\overline{C}_i([x])
is a contractor for , where
\overline{C}_1,\dots,\overline{C}_{m}
are contractors for
\overline{X}_1,\dots ,\overline{X}_m.
Combined with a branch-and-bound algorithm such as SIVIA (Set Inversion Via Interval Analysis), the q-relaxed
intersection of m subsets of can be computed.
Application to bounded-error estimation
The q-relaxed intersection can be used for robust localization
{{cite book|last1=Kieffer|first1=M.|last2=Walter|first2=E.|
title= Guaranteed characterization of exact non-asymptotic confidence regions in nonlinear parameter estimation|
year=2013|publisher=In Proceedings of IFAC Symposium on Nonlinear Control Systems, Toulouse : France (2013)|
url=http://hal-supelec.archives-ouvertes.fr/docs/00/81/94/88/PDF/Nolcos2013_KW.pdf}}
{{cite journal|last1=Drevelle|first1=V.|last2=Bonnifait|first2=Ph.|
title=A set-membership approach for high integrity height-aided satellite positioning|
journal=GPS Solutions|year=2011|volume=15|issue=4|pages=357–368 |doi=10.1007/s10291-010-0195-3 |bibcode=2011GPSS...15..357D |s2cid=121728552 |url=http://hal.archives-ouvertes.fr/hal-00608133/en/}}
or for tracking.
{{cite journal|last1=Langerwisch|first1=M.|last2=Wagner|first2=B.|
title=Guaranteed Mobile Robot Tracking Using Robust Interval Constraint Propagation|
journal=Intelligent Robotics and Applications|
year=2012}}.
Robust observers can also be implemented using the relaxed intersections to be robust with respect to outliers.
{{cite journal|last=Jaulin|first=L.|
title=Robust set membership state estimation; Application to Underwater Robotics|
journal=Automatica|
year=2009|volume=45|
url=http://www.ensta-bretagne.fr/jaulin/paper_sauce_automatica.pdf|
doi=10.1016/j.automatica.2008.06.013|pages=202–206}}
We propose here a simple example
{{cite journal|last1=Jaulin|first1=L.|last2=Kieffer|first2=M.|last3=Walter|first3=E.|last4=Meizel|first4=D.|title=Guaranteed robust nonlinear estimation with application to robot localization |journal=IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews |year=2002|volume=32|issue=4 |pages=374–381 |url=http://www.ensta-bretagne.fr/jaulin/robab.pdf|url-status=dead|archiveurl=https://web.archive.org/web/20110428224956/http://www.ensta-bretagne.fr/jaulin/robab.pdf|archivedate=2011-04-28 |doi=10.1109/TSMCC.2002.806747|s2cid=17436801 }}
to illustrate the method.
Consider a model the ith model output of which is given by
f_i(p)=\frac{1}{\sqrt{2\pi p_2}}\exp (-\frac{(t_i-p_1)^{2}}{2p_2})
where . Assume that we have
f_i(p) \in [y_i]
where and are given by the following list
\{ (1,[0;0.2]),(2,[0.3;2]),(3,[0.3;2]),(4,[0.1;0.2]),(5,[0.4;2]),(6,[-1;0.1]) \}
The sets for different are depicted on
Figure 4.