rhodamine 123
{{chembox
| Verifiedfields = changed
| Watchedfields = changed
| verifiedrevid = 464381696
| ImageFile = Rhodamine 123.svg
| ImageFile1 = Rhodamine_123.png
| ImageSize =
| PIN = 7-Amino-10-[2-(methoxycarbonyl)phenyl]-2H-xanthene-2-iminium chloride
| OtherNames = Rhodamine 123, EINECS 263-687-8, RH 123, LS-162564, C11190
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 13726662
| InChI = 1/C21H17N2O3.ClH/c1-25-21(24)15-5-3-2-4-14(15)20-16-8-6-12(22)10-18(16)26-19-11-13(23)7-9-17(19)20;/h2-11H,22-23H2,1H3;1H/q+1;/p-1
| InChIKey = TUFFYSFVSYUHPA-REWHXWOFAU
| SMILES = [Cl-].COC(=O)c4ccccc4c1c3ccc(N)cc3[o+]c2cc(N)ccc12
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C21H17N2O3.ClH/c1-25-21(24)15-5-3-2-4-14(15)20-16-8-6-12(22)10-18(16)26-19-11-13(23)7-9-17(19)20;/h2-11H,22-23H2,1H3;1H/q+1;/p-1
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = TUFFYSFVSYUHPA-UHFFFAOYSA-M
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo =62669-70-9
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 1N3CZ14C5O
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 176049
| EC_number = 263-687-8
| PubChem = 9929799
}}
| Section2 = {{Chembox Properties
| Formula =C21H17ClN2O3
| MolarMass =380.824
| Appearance =
| Density =
| MeltingPtC = 235
| BoilingPt =
| Solubility =
| Solvent = ethanol
| SolubleOther = 20 g/l
}}
| Section3 = {{Chembox Hazards
| GHSPictograms = {{GHS07}}
| GHSSignalWord = Warning
| HPhrases = {{H-phrases|302}}
| PPhrases = {{P-phrases|264|270|301+312|330|501}}
| ExternalSDS =
| MainHazards =
| FlashPt =
| AutoignitionPt =
}}
}}
Rhodamine 123 {{IPAc-en|ˈ|r|oʊ|d|əm|iː|n}} is a chemical compound and a dye. It is often used as a tracer dye within water to determine the rate and direction of flow and transport. Rhodamine dyes fluoresce and can thus be detected easily and inexpensively with instruments called fluorometers. Rhodamine dyes are used extensively in biotechnology applications such as fluorescence microscopy, flow cytometry, fluorescence correlation spectroscopy and ELISA. Rhodamine fluorescence can also be used as a measure of membrane polarization in live cell assays both within mitochondriaL. B. Chen. "Mitochondrial membrane potential in living cells."[http://www.annualreviews.org/doi/abs/10.1146/annurev.cb.04.110188.001103?journalCode=cellbio.1 Annu Rev Cell Biol. 4 (1988) 155–181]Darzynkiewicz Z, Traganos F, Staiano-Coico L, Kapuscinski J, Melamed MR. (1982) Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer Res. Mar;42(3):799-806. {{PMID|7059978}} and with bacteria. This use relies on the fact that rhodamine 123 accumulates in membranes in a manner which is dependent on membrane polarization.M. Huang, A. K. S. Camara, D. F. Stowe, F. Qi, D. A. Beard. "Mitochondrial inner membrane electrophysiology assessed by rhodamine-123 transport and fluorescence" [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508792/ Annals of Biomedical Engineering. (2007) 35 (7)]
The absorption of rhodamine 123 peaks around 505 nm and luminescence is tunable around 560 nm when used as a laser dye.[http://omlc.ogi.edu/spectra/PhotochemCAD/html/rhodamine123.html Rhodamine 123] Its luminescence quantum yield is 0.90.R. F. Kubin and A. N. Fletcher, "Fluorescence quantum yields of some rhodamine dyes." [https://dx.doi.org/10.1016/0022-2313(82)90045-X J. Luminescence 27 (1982) 455]
References
{{reflist}}