ribbon knot
{{Short description|Type of mathematical knot}}
In the mathematical area of knot theory, a ribbon knot is a knot that bounds a self-intersecting disk with only ribbon singularities. Intuitively, this kind of singularity can be formed by cutting a slit in the disk and passing another part of the disk through the slit. More precisely, this type of singularity is a closed arc consisting of intersection points of the disk with itself, such that the preimage of this arc consists of two arcs in the disc, one completely in the interior of the disk and the other having its two endpoints on the disk boundary.
Morse-theoretic formulation
A slice disc M is a smoothly embedded in with . Consider the function given by . By a small isotopy of M one can ensure that f restricts to a Morse function on M. One says is a ribbon knot if has no interior local maxima.
Slice-ribbon conjecture
Every ribbon knot is known to be a slice knot. A famous open problem, posed by Ralph Fox and known as the slice-ribbon conjecture, asks if the converse is true: is every (smoothly) slice knot ribbon?
{{harvtxt|Lisca|2007}} showed that the conjecture is true for knots of bridge number two. {{harvtxt|Greene|Jabuka|2011}} showed it to be true for three-stranded pretzel knots with odd parameters. However, {{harvtxt|Gompf|Scharlemann|Thompson|2010}} suggested that the conjecture might not be true, and provided a family of knots that could be counterexamples to it. The conjecture was further strengthened when a famous potential counter-example, the (2, 1) cable of the figure-eight knot, was shown to be not slice and thereby not a counterexample.{{Cite arXiv |last1=Dai |first1=Irving |last2=Kang |first2=Sungkyung |last3=Mallick |first3=Abhishek |last4=Park |first4=JungHwan |last5=Stoffregen |first5=Matthew |date=28 July 2022 |title=The $(2,1)$-cable of the figure-eight knot is not smoothly slice |class=math.GT |eprint=2207.14187}}{{Cite web |last=Sloman |first=Leila |date=2 February 2023 |title=Mathematicians Eliminate Long-Standing Threat to Knot Conjecture |url=https://www.quantamagazine.org/mathematicians-prove-this-knot-cannot-solve-major-problem-20230202 |website=Quanta Magazine}}
References
- {{citation
| last = Fox | first = R. H. | authorlink = Ralph Fox
| contribution = Some problems in knot theory
| location = Englewood Cliffs, New Jersey
| mr = 0140100
| pages = 168–176
| publisher = Prentice-Hall
| title = Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)
| year = 1962}}. Reprinted by Dover Books, 2010.
- {{citation
| last1 = Gompf | first1 = Robert E. | author1-link = Robert Gompf
| last2 = Scharlemann | first2 = Martin | author2-link = Martin Scharlemann
| last3 = Thompson | first3 = Abigail | author3-link = Abigail Thompson
| doi = 10.2140/gt.2010.14.2305
| issue = 4
| journal = Geometry & Topology
| mr = 2740649
| pages = 2305–2347
| title = Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures
| volume = 14
| year = 2010| arxiv = 1103.1601| s2cid = 58915479 }}.
- {{citation
| last1 = Greene | first1 = Joshua
| last2 = Jabuka | first2 = Stanislav
| arxiv = 0706.3398
| doi = 10.1353/ajm.2011.0022
| issue = 3
| journal = American Journal of Mathematics
| mr = 2808326
| pages = 555–580
| title = The slice-ribbon conjecture for 3-stranded pretzel knots
| volume = 133
| year = 2011| s2cid = 10279100
}}.
- {{citation
| last = Kauffman | first = Louis H. | authorlink = Louis Kauffman
| isbn = 0-691-08434-3
| location = Princeton, New Jersey
| mr = 907872
| publisher = Princeton University Press
| series = Annals of Mathematics Studies
| title = On Knots
| volume = 115
| year = 1987}}.
- {{citation
| last = Lisca | first = Paolo
| doi = 10.2140/gt.2007.11.429
| journal = Geometry & Topology
| mr = 2302495
| pages = 429–472
| title = Lens spaces, rational balls and the ribbon conjecture
| volume = 11
| year = 2007| arxiv = math/0701610
| s2cid = 15238217
}}.
References
{{reflist}}
External links
- {{Cite web |last=Sloman |first=Leila |date=18 May 2022 |title=How Complex Is a Knot? New Proof Reveals Ranking System That Works |url=https://www.quantamagazine.org/how-complex-is-a-knot-new-proof-reveals-ranking-system-that-works-20220518/ |website=Quanta Magazine |language=en}}
{{Knot theory|state=collapsed}}
{{Authority control}}
{{Use dmy dates|date=November 2024}}