roseophage

{{Short description|Roseobacter-family bacteriophage}}

File:Electron_micrographs_of_roseophage_vB_ThpS-P1_and_vB_PeaS-P1_particles.png

A roseophage is a type of bacteriophage, a virus that replicates within bacteria and archaea. It specifically infects bacteria from the Roseobacter family (also called Rhodobacteraceae), which are one of the major groups of bacteria found in the marine environment.{{Cite journal |last1=Chan |first1=Jacqueline Z.-M. |last2=Millard |first2=Andrew D. |last3=Mann |first3=Nicholas H. |last4=Schäfer |first4=Hendrik |date=2014-10-10 |title=Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes |journal=Frontiers in Microbiology |language=English |volume=5 |page=506 |doi=10.3389/fmicb.2014.00506 |doi-access=free |issn=1664-302X |pmc=4193335 |pmid=25346726}} Roseophages have narrow host ranges, which can be seen in the list of known phages, and are a virus mainly found in marine ecosystems like pelagic, estuaries and coastal regions, at various depths.{{Cite journal |last1=Du |first1=Sen |last2=Wu |first2=Ying |last3=Ying |first3=Hanqi |last4=Wu |first4=Zuqing |last5=Yang |first5=Mingyu |last6=Chen |first6=Feng |last7=Shao |first7=Jiabing |last8=Liu |first8=He |last9=Zhang |first9=Zefeng |last10=Zhao |first10=Yanlin |date=2024 |title=Genome sequences of the first Autographiviridae phages infecting marine Roseobacter |journal=Microbial Genomics |volume=10 |issue=4 |pages=001240 |doi=10.1099/mgen.0.001240 |doi-access=free |issn=2057-5858 |pmc=11092137 |pmid=38630615}}

History

Roseophages were first identified during studies examining microbial dynamics in ocean ecosystems. The initial discovery occurred in 1989, when researchers investigating marine bacterioplankton isolated a phage named Roseophage SIO1 from the coastal waters of California.{{Cite journal |last1=Rohwer |first1=Forest |last2=Segall |first2=Anca |last3=Steward |first3=Griegx |last4=Seguritan |first4=Victor |last5=Breitbart |first5=Mya |last6=Wolven |first6=Felise |last7=Farooq Azam |first7=Farooqx |date=2000 |title=The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages |url=https://aslopubs.onlinelibrary.wiley.com/doi/10.4319/lo.2000.45.2.0408 |journal=Limnology and Oceanography |language=en |volume=45 |issue=2 |pages=408–418 |doi=10.4319/lo.2000.45.2.0408 |bibcode=2000LimOc..45..408R |issn=1939-5590}}{{Cite journal |last1=Angly |first1=Florent |last2=Youle |first2=Merry |last3=Nosrat |first3=Bahador |last4=Srinagesh |first4=Shailaja |last5=Rodriguez-Brito |first5=Beltran |last6=McNairnie |first6=Patrick |last7=Deyanat-Yazdi |first7=Gordafaried |last8=Breitbart |first8=Mya |last9=Rohwer |first9=Forest |date=2009 |title=Genomic analysis of multiple Roseophage SIO1 strains |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2009.02021.x |journal=Environmental Microbiology |language=en |volume=11 |issue=11 |pages=2863–2873 |doi=10.1111/j.1462-2920.2009.02021.x |pmid=19659499 |bibcode=2009EnvMi..11.2863A |issn=1462-2920}} Using filtration and electron microscopy, researchers revealed that this phage shared genetic similarities with some non-marine bacteriophages. In 2000, SIO1 was sequenced and was found to have significant similarities to well-known non-marine bacteriophages such as coliphage T7 and Yersinia phage ΦA1122. Since then there have been multiple isolated strains from SIO1 that have been explored. The study marked the beginning of a broader scientific effort to characterize roseophages in marine environments, particularly in regions where Roseobacter species dominate microbial communities.

File:R26L_Map_and_picture.jpg

Subsequent research led to the identification of more roseophages in the Northern Hemisphere, including the isolation of Roseophage RDJLΦ2 from Roseobacter denitrificans OCh114 in coastal Chinese waters.{{Cite journal |last1=Liang |first1=Yantao |last2=Zhang |first2=Yongyu |last3=Zhou |first3=Chao |last4=Chen |first4=Zhenghao |last5=Yang |first5=Suping |last6=Yan |first6=Changzhou |last7=Jiao |first7=Nianzhi |date=2016-02-01 |title=Complete genome sequence of the siphovirus Roseophage RDJLΦ 2 infecting Roseobacter denitrificans OCh114 |url=https://linkinghub.elsevier.com/retrieve/pii/S1874778715300428 |journal=Marine Genomics |volume=25 |pages=17–19 |doi=10.1016/j.margen.2015.10.009 |pmid=26541473 |bibcode=2016MarGn..25...17L |issn=1874-7787|url-access=subscription }} Achieved through plaque assays, genome sequencing, and electron microscopy, this discovery expanded the understanding of roseophage diversity. Since then, roseophages have frequently been isolated from temperate, nutrient-rich coastal environments, where they play a key role in regulating microbial populations.

Roseophages are particularly abundant in coastal areas of the Northern Hemisphere.{{Cite journal |last1=Cai |first1=Lanlan |last2=Ma |first2=Ruijie |last3=Chen |first3=Hong |last4=Yang |first4=Yunlan |last5=Jiao |first5=Nianzhi |last6=Zhang |first6=Rui |date=2019-11-06 |title=A newly isolated roseophage represents a distinct member of Siphoviridae family |journal=Virology Journal |volume=16 |issue=1 |pages=128 |doi=10.1186/s12985-019-1241-6 |doi-access=free |issn=1743-422X |pmc=6836515 |pmid=31694663}} Their presence correlates with favourable environmental conditions such as optimal salinity, temperature, and organic matter availability which support Roseobacter populations.{{Cite journal |last1=Zhang |first1=Yongyu |last2=Jiao |first2=Nianzhi |date=2009-03-15 |title=Roseophage RDJLΦ1, Infecting the Aerobic Anoxygenic Phototrophic Bacterium Roseobacter denitrificans OCh114 |journal=Applied and Environmental Microbiology |volume=75 |issue=6 |pages=1745–1749 |doi=10.1128/AEM.02131-08 |pmc=2655476 |pmid=19139231|bibcode=2009ApEnM..75.1745Z }} Advances in techniques like metagenomics and phylogenetic analysis have further enabled the detection of roseophages in marine environments worldwide.{{Cite journal |last1=Zhan |first1=Yuanchao |last2=Chen |first2=Feng |date=2019 |title=Bacteriophages that infect marine roseobacters: genomics and ecology |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.14504 |journal=Environmental Microbiology |language=en |volume=21 |issue=6 |pages=1885–1895 |doi=10.1111/1462-2920.14504 |pmid=30556267 |bibcode=2019EnvMi..21.1885Z |issn=1462-2920|url-access=subscription }}

Lifestyles

Roseophages, such as other bacteriophages, have two different life cycles that they use to reproduce in host cells after injecting DNA into bacteria: the lysogenic cycle and the lytic cycle. Through the lysogenic cycle, the viruses can integrate into the genome of their host, while through the lytic cycle, the viruses take control of the host cell to specifically reproduce then lyse the host bacteria.{{Cite journal |last1=Gummalla |first1=Vimathi S. |last2=Zhang |first2=Yujie |last3=Liao |first3=Yen-Te |last4=Wu |first4=Vivian C. H. |date=2023-02-21 |title=The Role of Temperate Phages in Bacterial Pathogenicity |journal=Microorganisms |language=en |volume=11 |issue=3 |pages=541 |doi=10.3390/microorganisms11030541 |doi-access=free |issn=2076-2607 |pmc=10052878 |pmid=36985115}}

Roseophages can also be split into two lifestyles: temperate and virulent.

  1. Temperate lifestyle viruses, such as pCB2047-A/C, can reproduce using either the lysogenic cycle or the lytic cycle. The ring morphology of this specific roseophage is an indicator of a temperate lifestyle, as well as the presence of integrase and repressor genes in both phage genomes.{{Cite journal |last1=Ankrah |first1=Nana Y. D. |last2=Budinoff |first2=Charles R. |last3=Wilson |first3=William H. |last4=Wilhelm |first4=Steven W. |last5=Buchan |first5=Alison |date=2014-01-16 |title=Genome Sequence of the Sulfitobacter sp. Strain 2047-Infecting Lytic Phage ΦCB2047-B |journal=Genome Announcements |volume=2 |issue=1 |pages=10.1128/genomea.00945–13 |doi=10.1128/genomea.00945-13 |pmc=3894267 |pmid=24435853}}
  2. Virulent lifestyle viruses, such as R4C, can only reproduce using the lytic cycle, thus they are more restricted in their reproduction. There are more roseophages that have virulent lifestyles rather than temperate lifestyles.

Genome Structure

The genome structure of roseophages is highly diverse and reflects their adaptation to specific ecological niches. One defining feature is the presence of auxiliary metabolic genes (AMGs).{{Cite journal |last1=Huang |first1=Xingyu |last2=Jiao |first2=Nianzhi |last3=Zhang |first3=Rui |date=2021 |title=The genomic content and context of auxiliary metabolic genes in roseophages |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.15412 |journal=Environmental Microbiology |language=en |volume=23 |issue=7 |pages=3743–3757 |doi=10.1111/1462-2920.15412 |pmid=33511765 |bibcode=2021EnvMi..23.3743H |issn=1462-2920|url-access=subscription }} These genes help enhance the metabolic abilities of Roseobacter hosts during infection, boosting processes such as photosynthesis and nitrogen cycling to support host productivity before cell lysis occurs.{{Cite journal |last1=Huang |first1=Sijun |last2=Zhang |first2=Yongyu |last3=Chen |first3=Feng |last4=Jiao |first4=Nianzhi |date=2011-03-17 |title=Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria |journal=Virology Journal |volume=8 |issue=1 |pages=124 |doi=10.1186/1743-422X-8-124 |doi-access=free |issn=1743-422X |pmc=3070671 |pmid=21414219}} Analyzing roseophage AMGs distribution can determine whether a roseophage has a temperate or virulent lifestyle, as well as determine the host range as it correlates with AMG prevalence.

Their genomes often display high GC content and include conserved core genes that regulate crucial viral functions like lysis, replication, and DNA packaging. Comparative genomic studies of phages infecting Roseobacter pomeroyi DSS-3 and other related species have revealed both conserved elements and unique adaptations across different strains. The genome of roseophage SIO1 shares homology with both marine and non-marine phages. These genomic features have practical implications as they influence roseophage infectivity, life cycle regulation, and host specificity.

Notably, some globally distributed lytic roseophages contain unusual deoxythymidine-to-deoxyuridine substitutions in their DNA.{{Cite journal |last1=Rihtman |first1=Branko |last2=Puxty |first2=Richard J. |last3=Hapeshi |first3=Alexia |last4=Lee |first4=Yan-Jiun |last5=Zhan |first5=Yuanchao |last6=Michniewski |first6=Slawomir |last7=Waterfield |first7=Nicholas R. |last8=Chen |first8=Feng |last9=Weigele |first9=Peter |last10=Millard |first10=Andrew D. |last11=Scanlan |first11=David J. |last12=Chen |first12=Yin |date=2021-07-26 |title=A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution |journal=Current Biology |language=English |volume=31 |issue=14 |pages=3199–3206.e4 |doi=10.1016/j.cub.2021.05.014 |issn=0960-9822 |pmc=8323127 |pmid=34033748|bibcode=2021CBio...31E3199R }} This is a rare and distinctive trait that is thought to be an evolutionary adaptation to marine environments. Additionally, horizontal gene transfer appears to be a common feature among roseophages, enabling them to exchange genes with other marine viruses and contribute to microbial evolution in the ocean.

Classification

Since the discovery of Roseophage SIO1, there have been increasing amounts of roseophages that have been isolated and studied over the years. As seen in the table below, most roseophages are from families of the Caudoviricetes class such as Podoviridae, Autographiviridae, Siphoviridae, however, there are several that also come from the Microviridae family.{{Cite journal |last1=Wu |first1=Ying |last2=Wu |first2=Zuqing |last3=Guo |first3=Luyuan |last4=Shao |first4=Jiabing |last5=Xiao |first5=Hang |last6=Yang |first6=Mingyu |last7=Deng |first7=Chunmei |last8=Zhang |first8=Yahui |last9=Zhang |first9=Zefeng |last10=Zhao |first10=Yanlin |date=2024-10-23 |title=Diversity and distribution of a prevalent Microviridae group across the global oceans |journal=Communications Biology |language=en |volume=7 |issue=1 |page=1377 |doi=10.1038/s42003-024-07085-6 |issn=2399-3642 |pmc=11499846 |pmid=39443614}}

= List of Known Marine Roseophages =

class="wikitable"

!Phage Name

!Family

!Host

!Isolation site (if provided)

CRP-1{{Cite journal |last1=Zhang |first1=Zefeng |last2=Chen |first2=Feng |last3=Chu |first3=Xiao |last4=Zhang |first4=Hao |last5=Luo |first5=Haiwei |last6=Qin |first6=Fang |last7=Zhai |first7=Zhiqiang |last8=Yang |first8=Mingyu |last9=Sun |first9=Jing |last10=Zhao |first10=Yanlin |date=2019-12-17 |title=Diverse, Abundant, and Novel Viruses Infecting the Marine Roseobacter RCA Lineage |journal=mSystems |volume=4 |issue=6 |pages=10.1128/msystems.00494–19 |doi=10.1128/msystems.00494-19 |pmc=6918029 |pmid=31848303}}

|Podoviridae

|Planktomarina temperata FZCC0023

|Osaka Bay, Japan

CRP-2

|Podoviridae

|Planktomarina temperata FZCC0023

|Taiwan Strait

CRP-3

|Podoviridae

|Planktomarina temperata FZCC0040

|Bohai Sea

CRP-4

|Podoviridae

|Planktomarina temperata FZCC0023

|Bohai Sea

CRP-5

|Podoviridae

|Planktomarina temperata FZCC0040

|Taiwan Strait

CRP-6

|Podoviridae

|Planktomarina temperata FZCC0042

|Taiwan Strait

CRP-7

|Podoviridae

|Planktomarina temperata FZCC0042

|Bohai Sea

CRP-9{{Cite journal |last1=Zhai |first1=Zhiqiang |last2=Zhang |first2=Zefeng |last3=Zhao |first3=Guiyuan |last4=Liu |first4=Xinxin |last5=Qin |first5=Fang |last6=Zhao |first6=Yanlin |date=2021-10-20 |title=Genomic Characterization of Two Novel RCA Phages Reveals New Insights into the Diversity and Evolution of Marine Viruses |journal=Microbiology Spectrum |volume=9 |issue=2 |pages=e01239–21 |doi=10.1128/Spectrum.01239-21 |pmc=8528129 |pmid=34668749}}

|

|Roseobacter FZCC0023

|Pattaya Beach

CRP-13

|

|Roseobacter FZCC0023

|North Sea

CRP-114

|Autographiviridae

|Roseobacter FZCC0023

|Bohai Sea

CRP-113

|Autographiviridae

|Roseobacter FZCC0023

|East China Sea

CRP-118

|Autographiviridae

|Roseobacter FZCC0023

|East China Sea

CRP-171

|Autographiviridae

|Roseobacter FZCC0023

|East China Sea

CRP-143

|Autographiviridae

|Roseobacter FZCC0023

|East China Sea

CRP-125

|Autographiviridae

|Roseobacter FZCC0023

|East China Sea

CRP-227

|Autographiviridae

|Roseobacter FZCC0040

|Bohai Sea

CRP-361

|Autographiviridae

|Roseobacter FZCC0042

|Bohai Sea

CRP-403

|Autographiviridae

|Roseobacter FZCC0037

|Indian Ocean

CRP-804

|Autographiviridae

|Roseobacter FZCC0196

|Yellow Sea

CRP-810{{Cite journal |last1=Wu |first1=Zuqing |last2=Guo |first2=Luyuan |last3=Wu |first3=Ying |last4=Yang |first4=Mingyu |last5=Du |first5=Sen |last6=Shao |first6=Jiabing |last7=Zhang |first7=Zefeng |last8=Zhao |first8=Yanlin |date=2024-06-27 |title=Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family |journal=mSphere |volume=9 |issue=7 |pages=e00458–24 |doi=10.1128/msphere.00458-24 |pmc=11288001 |pmid=38926906}}

|Autographiviridae

|Roseobacter FZCC0198

|Yellow Sea

CRP-901{{Cite journal |last1=Zhang |first1=Zefeng |last2=Wu |first2=Zuqing |last3=Liu |first3=He |last4=Yang |first4=Mingyu |last5=Wang |first5=Rui |last6=Zhao |first6=Yanlin |last7=Chen |first7=Feng |date=2023-04-17 |title=Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus |journal=Frontiers in Microbiology |language=English |volume=14 |doi=10.3389/fmicb.2023.1164101 |doi-access=free |issn=1664-302X |pmc=10149686 |pmid=37138617}}

|Caudociricetes class

|CHAB-I-5 strain FZCC0083

|North Sea

CRP-902

|Caudociricetes class

|CHAB-I-5 strain FZCC0083

|Yellow Sea

CRPss-151

|Microviridae

|Roseobacter FZCC0023

|North Sea

CRPss-152

|Microviridae

|Roseobacter FZCC0023

|Yantai coast, Bohai Sea

CRPss-153

|Microviridae

|Roseobacter FZCC0023

|Yantai coast, Bohai Sea

CRPss-154

|Microviridae

|Roseobacter FZCC0023

|Yantai coast, Bohai Sea

CRPss-155

|Microviridae

|Roseobacter FZCC0023

|Yantai coast, Bohai Sea

CRPss-251

|Microviridae

|Roseobacter FZCC0040

|Pattaya Beach, Thailand

RPP1

|Podoviridae

|Roseobacter nubinhibens

|L4 sampling station, English Channel

RLP1

|Podoviridae

|Roseovarius sp.217

|Langstone Harbor,English Channel

RDJLΦ1

|Siphoviridae

|Roseobacter dinitrificans OCh114

|South China Sea

RDJLΦ2

|Siphoviridae

|Roseobacter dinitrificans OCh114

|Wuyuan Bay, Xiamen

DSS3Φ1

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

DSS3Φ2

|Podoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

DSS3Φ22

|Microviridae

|Ruegeria pomeroyi DSS3

|

DSS3_VP1

|Podoviridae

|Ruegeria pomeroyi DSS3

|Venice, Italy

DSS3_PM1

|Podoviridae

|Ruegeria pomeroyi DSS3

|Puerto Morelos, Mexico

DSS3Φ8

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

EE36Φ1

|Podoviridae

|Sulfitobacter sp. EE36

|Baltimore Inner Harbor, USA

vB_RpoMi-V15

|Microviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoMi-Mini

|Microviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_PeaS-P1

|Siphoviridae

|Pelagibaca abyssi JLT2014

|Southeastern Pacific Ocean

vB_ThpS-P1

|Siphoviridae

|Thiobacinimonas profunda JLT2016

|Southeastern Pacific Ocean

pCB2051-A

|Siphoviridae

|Loktanella sp. CB2051

|Norwegian Sea, Arctic

NYA-2014a

|Podoviridae

|Sulfitobacter strain 2047

|

ΦCB2047-A

|Podoviridae

|Sulfitobacter strain 2047

|Raunefjorden, Norway

ΦCB2047-B

|Podoviridae

|Sulfitobacter strain 2047

|Norway

ΦCB2047-C

|Podoviridae

|Sulfitobacter strain 2047

|Raunefjorden, Norway

vB_RpoS-V7

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoS-V10

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoS-V11

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoS-V16

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoS-V18

|Siphoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoP-V12

|Podoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoP-V13

|Podoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoP-V14

|Podoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoP-V17

|Podoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

vB_RpoP-V21

|Podoviridae

|Ruegeria pomeroyi DSS3

|Baltimore Inner Harbor, USA

DS-1410Ws-06{{Cite journal |last1=Li |first1=Baolian |last2=Zhang |first2=Si |last3=Long |first3=Lijuan |last4=Huang |first4=Sijun |date=2016-09-01 |title=Characterization and Complete Genome Sequences of Three N4-Like Roseobacter Phages Isolated from the South China Sea |url=https://link.springer.com/article/10.1007/s00284-016-1071-3 |journal=Current Microbiology |language=en |volume=73 |issue=3 |pages=409–418 |doi=10.1007/s00284-016-1071-3 |pmid=27270945 |issn=1432-0991|url-access=subscription }}

|Podoviridae

|Dinoroseobacter shibae DFL12 and Roseobacter dinitrificans OCh114

|Sanya Bay, Northern South China Sea

RD-1410W1-01

|Podoviridae

|Dinoroseobacter shibae DFL12, Roseobacter dinitrificans OCh114

|Sanya Bay, Northern South China Sea

RD-1410Ws-07

|Podoviridae

|Roseobacter dinitrificans OCh114

|Sanya Bay, Northern South China Sea

P12053L

|Podoviridae

|Celeribacter sp. strain IMCC12053

|Yellow Sea

LenP_VB1

|Podoviridae

|Lentibacter sp. SH36

|

LenP_VB2

|Podoviridae

|Lentibacter sp. SH36

|

LenP_VB3

|Podoviridae

|Lentibacter sp. SH36

|

SIO1-1989

|Podoviridae

|Roseobacter SIO67

|Scripps Pier, California

SIO1-2001

|Podoviridae

|Roseobacter SIO67

|Scripps Pier, California

OS-2001

|Podoviridae

|Roseobacter SIO67

|Oceanside, California

SBRSIO67-2001

|Podoviridae

|Roseobacter SIO67, Roseobacter GAI-101

|Solana Beach, California

MB-2001

|Podoviridae

|Roseobacter SIO67

|Mission Bay, California

R26L

|Siphoviridae-like

|Dinoroseobacter shibae DFL12T

|Pearl River Estuary, China

ICBM1{{Cite journal |last1=Bischoff |first1=Vera |last2=Bunk |first2=Boyke |last3=Meier-Kolthoff |first3=Jan P |last4=Spröer |first4=Cathrin |last5=Poehlein |first5=Anja |last6=Dogs |first6=Marco |last7=Nguyen |first7=Mary |last8=Petersen |first8=Jörn |last9=Daniel |first9=Rolf |last10=Overmann |first10=Jörg |last11=Göker |first11=Markus |last12=Simon |first12=Meinhard |last13=Brinkhoff |first13=Thorsten |last14=Moraru |first14=Cristina |date=2019-06-01 |title=Cobaviruses – a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems |journal=The ISME Journal |language=en |volume=13 |issue=6 |pages=1404–1421 |doi=10.1038/s41396-019-0362-7 |issn=1751-7362 |pmc=6775973 |pmid=30718806|bibcode=2019ISMEJ..13.1404B }}

|Podoviridae

|Lentibacter sp. SH36

|Southern North Sea

ICBM2

|Podoviridae

|Lentibacter sp. SH36

|Southern North Sea

Tedan{{Cite journal |last1=Baum |first1=Lisa |last2=Nguyen |first2=Mary T. H. D. |last3=Jia |first3=Yunke |last4=Biazik |first4=Joanna |last5=Thomas |first5=Torsten |date=2021 |title=Characterization of a novel roseophage and the morphological and transcriptional response of the sponge symbiont Ruegeria AU67 to infection |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.15474 |journal=Environmental Microbiology |language=en |volume=23 |issue=5 |pages=2532–2549 |doi=10.1111/1462-2920.15474 |pmid=33754443 |bibcode=2021EnvMi..23.2532B |issn=1462-2920|url-access=subscription }}

|Siphoviridae

|Ruegeria pomeroyi AU67

|Botany Bay

vB_DshP-R1

|Podoviridae

|Dinoroseobacter shibae DFL12

|Baicheng Harbor, Xiamen

vB_DshP-R2C

|Podoviridae

|Dinoroseobacter shibae DFL12

|Huangcuo station, Xiamen

vB_DshS-R4C{{Cite journal |last1=Huang |first1=Yang |last2=Sun |first2=Hui |last3=Wei |first3=Shuzhen |last4=Cai |first4=Lanlan |last5=Liu |first5=Liqin |last6=Jiang |first6=Yanan |last7=Xin |first7=Jiabao |last8=Chen |first8=Zhenqin |last9=Que |first9=Yuqiong |last10=Kong |first10=Zhibo |last11=Li |first11=Tingting |last12=Yu |first12=Hai |last13=Zhang |first13=Jun |last14=Gu |first14=Ying |last15=Zheng |first15=Qingbing |date=2023-06-17 |title=Structure and proposed DNA delivery mechanism of a marine roseophage |journal=Nature Communications |language=en |volume=14 |issue=1 |pages=3609 |doi=10.1038/s41467-023-39220-y |issn=2041-1723 |pmc=10276861 |pmid=37330604|bibcode=2023NatCo..14.3609H }}

|Siphoviridae

|Dinoroseobacter shibae DFL12T

|coastal waters of Xiamen

vB_DshS-R5C

|Siphoviridae

|Dinoroseobacter shibae DFL12

|South China Sea

Ecology

File:TEM_micrograph_of_RLP1_and_RPP1.jpg

Unable to replicate on their own, viruses must rely on bacteria in a symbiotic relationship.{{Cite journal |last=Roossinck |first=Marilyn J. |date=2015-06-03 |title=Move Over, Bacteria! Viruses Make Their Mark as Mutualistic Microbial Symbionts |journal=Journal of Virology |volume=89 |issue=13 |pages=6532–6535 |doi=10.1128/jvi.02974-14 |pmc=4468468 |pmid=25903335}} Roseophages have shown to boost DNA synthesis within Roseobacteria due to 4 AMGs: vB_DshP-R7L_gp29 (dcd) encoding dCMP deaminase, vB_DshP-R7L_gp32 (thyX) encoding thymidylate synthase, vB_DshP-R7L_gp43 (trx) encoding thioredoxin, vB_DshP-R7L_gp55 (rnr) encoding ribonucleotide reductase.{{Cite journal |last1=Huang |first1=Xingyu |last2=Yu |first2=Chen |last3=Lu |first3=Longfei |date=March 25, 2025 |title=Isolation and characterization of a roseophage representing a novel genus in the N4-like Rhodovirinae subfamily distributed in estuarine waters |journal=BMC Genomics |volume=26 |issue=295|page=295 |doi=10.1186/s12864-025-11463-7 |doi-access=free |pmid=40133813 |pmc=11934525 }} DCMP deaminase (Dcd gene) converts deoxycytidine monophosphate (dCMP) to deoxyuridine monophosphate (dUMP). Thioredoxin reductase (trx gene) acts as a proton donor transferring protons from nicotinamide adenine dinucleotide phosphate (NADPH) to ribonucleotide reductase (rnr gene) reducing ribonucleoside diphosphate (rNDP) to deoxyribonucleoside diphosphate (dNDP). Thymidylate synthase (thyX gene) aids in pyrimidine synthesis converting dUMP to deoxythymidine monophosphate (dTMP). In all the prior metabolic pathways, roseophage AMGs provide genes that encode for proteins necessary for DNA synthesis for the host Roseobacteria.

In a process known as viral shunt, roseophages prevent the uptake of carbon and nutrients from higher trophic levels in the form of particulate organic matter (POM) and recycle matter as dissolved organic matter (DOM).{{Cite journal |last1=Brown |first1=Teagan L |last2=Charity |first2=Oliver J |last3=Adriaenssens |first3=Evelien M |date=2022-12-01 |title=Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut |journal=Current Opinion in Microbiology |volume=70 |pages=102229 |doi=10.1016/j.mib.2022.102229 |pmid=36347213 |issn=1369-5274|doi-access=free }} As an integral part of the microbial loop, the lysis of Roseobacteria by roseophages recycles nutrients and organic matter back into the surrounding environment. This can optimize the effects of the biological pump in carbon sequestration producing larger primary producers like phytoplankton which can absorb more atmospheric carbon and sequester it into the deep ocean.{{Cite journal |last1=Nowicki |first1=Michael |last2=DeVries |first2=Tim |last3=Siegel |first3=David A. |date=2022 |title=Quantifying the Carbon Export and Sequestration Pathways of the Ocean's Biological Carbon Pump |journal=Global Biogeochemical Cycles |language=en |volume=36 |issue=3 |pages=e2021GB007083 |doi=10.1029/2021GB007083 |bibcode=2022GBioC..3607083N |issn=1944-9224|doi-access=free }}{{Cite journal |last1=Dang |first1=Chansotheary |last2=Morrissey |first2=Ember M. |date=2024 |title=The size and diversity of microbes determine carbon use efficiency in soil |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.16633 |journal=Environmental Microbiology |language=en |volume=26 |issue=5 |pages=e16633 |doi=10.1111/1462-2920.16633 |pmid=38733078 |bibcode=2024EnvMi..26E6633D |issn=1462-2920|url-access=subscription }}

File:R4C_roseophage.jpg

Roseophages have shown potential to improve utilization of carbon and nitrogen sources in estuaries through the specific auxiliary metabolic gene vB_DshP-R7L_gp40 (nanS) which codes for Sialate O-acetylesterase. Sialic acids are sources of carbon and nitrogen however cannot be metabolized in their acetylated form. Sialate O-acetylesterase hydrolyze acetyl groups from sialic acids which can be readily taken up and metabolized by other microbes.{{Cite journal |last1=Mandal |first1=Chandan |last2=Mandal |first2=Chhabinath |last3=Chandra |first3=Sarmila |last4=Schauer |first4=Roland |last5=Mandal |first5=Chitra |date=2012-01-01 |title=Regulation of O-acetylation of sialic acids by sialate-O-acetyltransferase and sialate-O-acetylesterase activities in childhood acute lymphoblastic leukemia |url=https://academic.oup.com/glycob/article-abstract/22/1/70/1987996?redirectedFrom=fulltext |journal=Glycobiology |volume=22 |issue=1 |pages=70–83 |doi=10.1093/glycob/cwr106 |pmid=21803834 |issn=0959-6658}} Indirectly, roseophages could increase microbial uptake of nitrogen and carbon in estuaries enhancing productivity of metabolic functions which aid in the removal or degradation of pathogens or pollutants.{{Citation |last1=Singh |first1=Manoj Kumar |title=Bioaugmentation for the treatment of waterborne pathogen contamination water |date=2020 |journal=Waterborne Pathogens |pages=189–203 |publisher=Elsevier |language=en |doi=10.1016/B978-0-12-818783-8.00010-4 |isbn=978-0-12-818783-8 |pmc=7153333 |last2=Maurya |first2=Anurag |last3=Kumar |first3=Sushil}} As estuaries are an important aspect to nourish aquaculture and improve water for recreational use, applications of roseophages in estuaries as a waste water treatment technique could improve current water treatment strategies and further improve the quality of water in areas abundant in roseophages.{{Cite journal |last1=Oyetibo |first1=Ganiyu Oladunjoye |last2=Miyauchi |first2=Keisuke |last3=Huang |first3=Yi |last4=Chien |first4=Mei-Fang |last5=Ilori |first5=Matthew Olusoji |last6=Amund |first6=Olukayode Oladipo |last7=Endo |first7=Ginro |date=2017-04-01 |title=Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants |url=https://linkinghub.elsevier.com/retrieve/pii/S0964830516304929 |journal=International Biodeterioration & Biodegradation |series=Environmental Biotechnologies for Sustainable Development (EBSuD) |volume=119 |pages=614–625 |doi=10.1016/j.ibiod.2016.10.005 |bibcode=2017IBiBi.119..614O |issn=0964-8305|url-access=subscription }}{{Cite journal |last1=Crump |first1=Byron C. |last2=Bowen |first2=Jennifer L. |date=2024-01-17 |title=The Microbial Ecology of Estuarine Ecosystems |journal=Annual Review of Marine Science |language=en |volume=16 |issue=16|pages=335–360 |doi=10.1146/annurev-marine-022123-101845 |pmid=37418833 |issn=1941-1405|doi-access=free }}

{{clear}}

References