roseophage
{{Short description|Roseobacter-family bacteriophage}}
File:Electron_micrographs_of_roseophage_vB_ThpS-P1_and_vB_PeaS-P1_particles.png
A roseophage is a type of bacteriophage, a virus that replicates within bacteria and archaea. It specifically infects bacteria from the Roseobacter family (also called Rhodobacteraceae), which are one of the major groups of bacteria found in the marine environment.{{Cite journal |last1=Chan |first1=Jacqueline Z.-M. |last2=Millard |first2=Andrew D. |last3=Mann |first3=Nicholas H. |last4=Schäfer |first4=Hendrik |date=2014-10-10 |title=Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes |journal=Frontiers in Microbiology |language=English |volume=5 |page=506 |doi=10.3389/fmicb.2014.00506 |doi-access=free |issn=1664-302X |pmc=4193335 |pmid=25346726}} Roseophages have narrow host ranges, which can be seen in the list of known phages, and are a virus mainly found in marine ecosystems like pelagic, estuaries and coastal regions, at various depths.{{Cite journal |last1=Du |first1=Sen |last2=Wu |first2=Ying |last3=Ying |first3=Hanqi |last4=Wu |first4=Zuqing |last5=Yang |first5=Mingyu |last6=Chen |first6=Feng |last7=Shao |first7=Jiabing |last8=Liu |first8=He |last9=Zhang |first9=Zefeng |last10=Zhao |first10=Yanlin |date=2024 |title=Genome sequences of the first Autographiviridae phages infecting marine Roseobacter |journal=Microbial Genomics |volume=10 |issue=4 |pages=001240 |doi=10.1099/mgen.0.001240 |doi-access=free |issn=2057-5858 |pmc=11092137 |pmid=38630615}}
History
Roseophages were first identified during studies examining microbial dynamics in ocean ecosystems. The initial discovery occurred in 1989, when researchers investigating marine bacterioplankton isolated a phage named Roseophage SIO1 from the coastal waters of California.{{Cite journal |last1=Rohwer |first1=Forest |last2=Segall |first2=Anca |last3=Steward |first3=Griegx |last4=Seguritan |first4=Victor |last5=Breitbart |first5=Mya |last6=Wolven |first6=Felise |last7=Farooq Azam |first7=Farooqx |date=2000 |title=The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages |url=https://aslopubs.onlinelibrary.wiley.com/doi/10.4319/lo.2000.45.2.0408 |journal=Limnology and Oceanography |language=en |volume=45 |issue=2 |pages=408–418 |doi=10.4319/lo.2000.45.2.0408 |bibcode=2000LimOc..45..408R |issn=1939-5590}}{{Cite journal |last1=Angly |first1=Florent |last2=Youle |first2=Merry |last3=Nosrat |first3=Bahador |last4=Srinagesh |first4=Shailaja |last5=Rodriguez-Brito |first5=Beltran |last6=McNairnie |first6=Patrick |last7=Deyanat-Yazdi |first7=Gordafaried |last8=Breitbart |first8=Mya |last9=Rohwer |first9=Forest |date=2009 |title=Genomic analysis of multiple Roseophage SIO1 strains |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2009.02021.x |journal=Environmental Microbiology |language=en |volume=11 |issue=11 |pages=2863–2873 |doi=10.1111/j.1462-2920.2009.02021.x |pmid=19659499 |bibcode=2009EnvMi..11.2863A |issn=1462-2920}} Using filtration and electron microscopy, researchers revealed that this phage shared genetic similarities with some non-marine bacteriophages. In 2000, SIO1 was sequenced and was found to have significant similarities to well-known non-marine bacteriophages such as coliphage T7 and Yersinia phage ΦA1122. Since then there have been multiple isolated strains from SIO1 that have been explored. The study marked the beginning of a broader scientific effort to characterize roseophages in marine environments, particularly in regions where Roseobacter species dominate microbial communities.
Subsequent research led to the identification of more roseophages in the Northern Hemisphere, including the isolation of Roseophage RDJLΦ2 from Roseobacter denitrificans OCh114 in coastal Chinese waters.{{Cite journal |last1=Liang |first1=Yantao |last2=Zhang |first2=Yongyu |last3=Zhou |first3=Chao |last4=Chen |first4=Zhenghao |last5=Yang |first5=Suping |last6=Yan |first6=Changzhou |last7=Jiao |first7=Nianzhi |date=2016-02-01 |title=Complete genome sequence of the siphovirus Roseophage RDJLΦ 2 infecting Roseobacter denitrificans OCh114 |url=https://linkinghub.elsevier.com/retrieve/pii/S1874778715300428 |journal=Marine Genomics |volume=25 |pages=17–19 |doi=10.1016/j.margen.2015.10.009 |pmid=26541473 |bibcode=2016MarGn..25...17L |issn=1874-7787|url-access=subscription }} Achieved through plaque assays, genome sequencing, and electron microscopy, this discovery expanded the understanding of roseophage diversity. Since then, roseophages have frequently been isolated from temperate, nutrient-rich coastal environments, where they play a key role in regulating microbial populations.
Roseophages are particularly abundant in coastal areas of the Northern Hemisphere.{{Cite journal |last1=Cai |first1=Lanlan |last2=Ma |first2=Ruijie |last3=Chen |first3=Hong |last4=Yang |first4=Yunlan |last5=Jiao |first5=Nianzhi |last6=Zhang |first6=Rui |date=2019-11-06 |title=A newly isolated roseophage represents a distinct member of Siphoviridae family |journal=Virology Journal |volume=16 |issue=1 |pages=128 |doi=10.1186/s12985-019-1241-6 |doi-access=free |issn=1743-422X |pmc=6836515 |pmid=31694663}} Their presence correlates with favourable environmental conditions such as optimal salinity, temperature, and organic matter availability which support Roseobacter populations.{{Cite journal |last1=Zhang |first1=Yongyu |last2=Jiao |first2=Nianzhi |date=2009-03-15 |title=Roseophage RDJLΦ1, Infecting the Aerobic Anoxygenic Phototrophic Bacterium Roseobacter denitrificans OCh114 |journal=Applied and Environmental Microbiology |volume=75 |issue=6 |pages=1745–1749 |doi=10.1128/AEM.02131-08 |pmc=2655476 |pmid=19139231|bibcode=2009ApEnM..75.1745Z }} Advances in techniques like metagenomics and phylogenetic analysis have further enabled the detection of roseophages in marine environments worldwide.{{Cite journal |last1=Zhan |first1=Yuanchao |last2=Chen |first2=Feng |date=2019 |title=Bacteriophages that infect marine roseobacters: genomics and ecology |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.14504 |journal=Environmental Microbiology |language=en |volume=21 |issue=6 |pages=1885–1895 |doi=10.1111/1462-2920.14504 |pmid=30556267 |bibcode=2019EnvMi..21.1885Z |issn=1462-2920|url-access=subscription }}
Lifestyles
Roseophages, such as other bacteriophages, have two different life cycles that they use to reproduce in host cells after injecting DNA into bacteria: the lysogenic cycle and the lytic cycle. Through the lysogenic cycle, the viruses can integrate into the genome of their host, while through the lytic cycle, the viruses take control of the host cell to specifically reproduce then lyse the host bacteria.{{Cite journal |last1=Gummalla |first1=Vimathi S. |last2=Zhang |first2=Yujie |last3=Liao |first3=Yen-Te |last4=Wu |first4=Vivian C. H. |date=2023-02-21 |title=The Role of Temperate Phages in Bacterial Pathogenicity |journal=Microorganisms |language=en |volume=11 |issue=3 |pages=541 |doi=10.3390/microorganisms11030541 |doi-access=free |issn=2076-2607 |pmc=10052878 |pmid=36985115}}
Roseophages can also be split into two lifestyles: temperate and virulent.
- Temperate lifestyle viruses, such as pCB2047-A/C, can reproduce using either the lysogenic cycle or the lytic cycle. The ring morphology of this specific roseophage is an indicator of a temperate lifestyle, as well as the presence of integrase and repressor genes in both phage genomes.{{Cite journal |last1=Ankrah |first1=Nana Y. D. |last2=Budinoff |first2=Charles R. |last3=Wilson |first3=William H. |last4=Wilhelm |first4=Steven W. |last5=Buchan |first5=Alison |date=2014-01-16 |title=Genome Sequence of the Sulfitobacter sp. Strain 2047-Infecting Lytic Phage ΦCB2047-B |journal=Genome Announcements |volume=2 |issue=1 |pages=10.1128/genomea.00945–13 |doi=10.1128/genomea.00945-13 |pmc=3894267 |pmid=24435853}}
- Virulent lifestyle viruses, such as R4C, can only reproduce using the lytic cycle, thus they are more restricted in their reproduction. There are more roseophages that have virulent lifestyles rather than temperate lifestyles.
Genome Structure
The genome structure of roseophages is highly diverse and reflects their adaptation to specific ecological niches. One defining feature is the presence of auxiliary metabolic genes (AMGs).{{Cite journal |last1=Huang |first1=Xingyu |last2=Jiao |first2=Nianzhi |last3=Zhang |first3=Rui |date=2021 |title=The genomic content and context of auxiliary metabolic genes in roseophages |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.15412 |journal=Environmental Microbiology |language=en |volume=23 |issue=7 |pages=3743–3757 |doi=10.1111/1462-2920.15412 |pmid=33511765 |bibcode=2021EnvMi..23.3743H |issn=1462-2920|url-access=subscription }} These genes help enhance the metabolic abilities of Roseobacter hosts during infection, boosting processes such as photosynthesis and nitrogen cycling to support host productivity before cell lysis occurs.{{Cite journal |last1=Huang |first1=Sijun |last2=Zhang |first2=Yongyu |last3=Chen |first3=Feng |last4=Jiao |first4=Nianzhi |date=2011-03-17 |title=Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria |journal=Virology Journal |volume=8 |issue=1 |pages=124 |doi=10.1186/1743-422X-8-124 |doi-access=free |issn=1743-422X |pmc=3070671 |pmid=21414219}} Analyzing roseophage AMGs distribution can determine whether a roseophage has a temperate or virulent lifestyle, as well as determine the host range as it correlates with AMG prevalence.
Their genomes often display high GC content and include conserved core genes that regulate crucial viral functions like lysis, replication, and DNA packaging. Comparative genomic studies of phages infecting Roseobacter pomeroyi DSS-3 and other related species have revealed both conserved elements and unique adaptations across different strains. The genome of roseophage SIO1 shares homology with both marine and non-marine phages. These genomic features have practical implications as they influence roseophage infectivity, life cycle regulation, and host specificity.
Notably, some globally distributed lytic roseophages contain unusual deoxythymidine-to-deoxyuridine substitutions in their DNA.{{Cite journal |last1=Rihtman |first1=Branko |last2=Puxty |first2=Richard J. |last3=Hapeshi |first3=Alexia |last4=Lee |first4=Yan-Jiun |last5=Zhan |first5=Yuanchao |last6=Michniewski |first6=Slawomir |last7=Waterfield |first7=Nicholas R. |last8=Chen |first8=Feng |last9=Weigele |first9=Peter |last10=Millard |first10=Andrew D. |last11=Scanlan |first11=David J. |last12=Chen |first12=Yin |date=2021-07-26 |title=A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution |journal=Current Biology |language=English |volume=31 |issue=14 |pages=3199–3206.e4 |doi=10.1016/j.cub.2021.05.014 |issn=0960-9822 |pmc=8323127 |pmid=34033748|bibcode=2021CBio...31E3199R }} This is a rare and distinctive trait that is thought to be an evolutionary adaptation to marine environments. Additionally, horizontal gene transfer appears to be a common feature among roseophages, enabling them to exchange genes with other marine viruses and contribute to microbial evolution in the ocean.
Classification
Since the discovery of Roseophage SIO1, there have been increasing amounts of roseophages that have been isolated and studied over the years. As seen in the table below, most roseophages are from families of the Caudoviricetes class such as Podoviridae, Autographiviridae, Siphoviridae, however, there are several that also come from the Microviridae family.{{Cite journal |last1=Wu |first1=Ying |last2=Wu |first2=Zuqing |last3=Guo |first3=Luyuan |last4=Shao |first4=Jiabing |last5=Xiao |first5=Hang |last6=Yang |first6=Mingyu |last7=Deng |first7=Chunmei |last8=Zhang |first8=Yahui |last9=Zhang |first9=Zefeng |last10=Zhao |first10=Yanlin |date=2024-10-23 |title=Diversity and distribution of a prevalent Microviridae group across the global oceans |journal=Communications Biology |language=en |volume=7 |issue=1 |page=1377 |doi=10.1038/s42003-024-07085-6 |issn=2399-3642 |pmc=11499846 |pmid=39443614}}
= List of Known Marine Roseophages =
class="wikitable"
!Phage Name !Family !Host !Isolation site (if provided) |
CRP-1{{Cite journal |last1=Zhang |first1=Zefeng |last2=Chen |first2=Feng |last3=Chu |first3=Xiao |last4=Zhang |first4=Hao |last5=Luo |first5=Haiwei |last6=Qin |first6=Fang |last7=Zhai |first7=Zhiqiang |last8=Yang |first8=Mingyu |last9=Sun |first9=Jing |last10=Zhao |first10=Yanlin |date=2019-12-17 |title=Diverse, Abundant, and Novel Viruses Infecting the Marine Roseobacter RCA Lineage |journal=mSystems |volume=4 |issue=6 |pages=10.1128/msystems.00494–19 |doi=10.1128/msystems.00494-19 |pmc=6918029 |pmid=31848303}}
|Podoviridae |Planktomarina temperata FZCC0023 |
CRP-2
|Podoviridae |Planktomarina temperata FZCC0023 |
CRP-3
|Podoviridae |Planktomarina temperata FZCC0040 |
CRP-4
|Podoviridae |Planktomarina temperata FZCC0023 |Bohai Sea |
CRP-5
|Podoviridae |Planktomarina temperata FZCC0040 |Taiwan Strait |
CRP-6
|Podoviridae |Planktomarina temperata FZCC0042 |Taiwan Strait |
CRP-7
|Podoviridae |Planktomarina temperata FZCC0042 |Bohai Sea |
CRP-9{{Cite journal |last1=Zhai |first1=Zhiqiang |last2=Zhang |first2=Zefeng |last3=Zhao |first3=Guiyuan |last4=Liu |first4=Xinxin |last5=Qin |first5=Fang |last6=Zhao |first6=Yanlin |date=2021-10-20 |title=Genomic Characterization of Two Novel RCA Phages Reveals New Insights into the Diversity and Evolution of Marine Viruses |journal=Microbiology Spectrum |volume=9 |issue=2 |pages=e01239–21 |doi=10.1128/Spectrum.01239-21 |pmc=8528129 |pmid=34668749}}
| |Roseobacter FZCC0023 |
CRP-13
| |Roseobacter FZCC0023 |
CRP-114
|Autographiviridae |Roseobacter FZCC0023 |Bohai Sea |
CRP-113
|Autographiviridae |Roseobacter FZCC0023 |
CRP-118
|Autographiviridae |Roseobacter FZCC0023 |East China Sea |
CRP-171
|Autographiviridae |Roseobacter FZCC0023 |East China Sea |
CRP-143
|Autographiviridae |Roseobacter FZCC0023 |East China Sea |
CRP-125
|Autographiviridae |Roseobacter FZCC0023 |East China Sea |
CRP-227
|Autographiviridae |Roseobacter FZCC0040 |Bohai Sea |
CRP-361
|Autographiviridae |Roseobacter FZCC0042 |Bohai Sea |
CRP-403
|Autographiviridae |Roseobacter FZCC0037 |
CRP-804
|Autographiviridae |Roseobacter FZCC0196 |
CRP-810{{Cite journal |last1=Wu |first1=Zuqing |last2=Guo |first2=Luyuan |last3=Wu |first3=Ying |last4=Yang |first4=Mingyu |last5=Du |first5=Sen |last6=Shao |first6=Jiabing |last7=Zhang |first7=Zefeng |last8=Zhao |first8=Yanlin |date=2024-06-27 |title=Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family |journal=mSphere |volume=9 |issue=7 |pages=e00458–24 |doi=10.1128/msphere.00458-24 |pmc=11288001 |pmid=38926906}}
|Autographiviridae |Roseobacter FZCC0198 |Yellow Sea |
CRP-901{{Cite journal |last1=Zhang |first1=Zefeng |last2=Wu |first2=Zuqing |last3=Liu |first3=He |last4=Yang |first4=Mingyu |last5=Wang |first5=Rui |last6=Zhao |first6=Yanlin |last7=Chen |first7=Feng |date=2023-04-17 |title=Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus |journal=Frontiers in Microbiology |language=English |volume=14 |doi=10.3389/fmicb.2023.1164101 |doi-access=free |issn=1664-302X |pmc=10149686 |pmid=37138617}}
|Caudociricetes class |CHAB-I-5 strain FZCC0083 |North Sea |
CRP-902
|Caudociricetes class |CHAB-I-5 strain FZCC0083 |Yellow Sea |
CRPss-151
|Microviridae |Roseobacter FZCC0023 |North Sea |
CRPss-152
|Microviridae |Roseobacter FZCC0023 |Yantai coast, Bohai Sea |
CRPss-153
|Microviridae |Roseobacter FZCC0023 |Yantai coast, Bohai Sea |
CRPss-154
|Microviridae |Roseobacter FZCC0023 |Yantai coast, Bohai Sea |
CRPss-155
|Microviridae |Roseobacter FZCC0023 |Yantai coast, Bohai Sea |
CRPss-251
|Microviridae |Roseobacter FZCC0040 |Pattaya Beach, Thailand |
RPP1
|Podoviridae |Roseobacter nubinhibens |L4 sampling station, English Channel |
RLP1
|Podoviridae |Roseovarius sp.217 |Langstone Harbor,English Channel |
RDJLΦ1
|Siphoviridae |Roseobacter dinitrificans OCh114 |
RDJLΦ2
|Siphoviridae |Roseobacter dinitrificans OCh114 |Wuyuan Bay, Xiamen |
DSS3Φ1
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
DSS3Φ2
|Podoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
DSS3Φ22
|Microviridae |Ruegeria pomeroyi DSS3 | |
DSS3_VP1
|Podoviridae |Ruegeria pomeroyi DSS3 |
DSS3_PM1
|Podoviridae |Ruegeria pomeroyi DSS3 |Puerto Morelos, Mexico |
DSS3Φ8
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
EE36Φ1
|Podoviridae |Sulfitobacter sp. EE36 |Baltimore Inner Harbor, USA |
vB_RpoMi-V15
|Microviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoMi-Mini
|Microviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_PeaS-P1
|Siphoviridae |Pelagibaca abyssi JLT2014 |
vB_ThpS-P1
|Siphoviridae |Thiobacinimonas profunda JLT2016 |Southeastern Pacific Ocean |
pCB2051-A
|Siphoviridae |Loktanella sp. CB2051 |Norwegian Sea, Arctic |
NYA-2014a
|Podoviridae |Sulfitobacter strain 2047 | |
ΦCB2047-A
|Podoviridae |Sulfitobacter strain 2047 |Raunefjorden, Norway |
ΦCB2047-B
|Podoviridae |Sulfitobacter strain 2047 |
ΦCB2047-C
|Podoviridae |Sulfitobacter strain 2047 |Raunefjorden, Norway |
vB_RpoS-V7
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoS-V10
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoS-V11
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoS-V16
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoS-V18
|Siphoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoP-V12
|Podoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoP-V13
|Podoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoP-V14
|Podoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoP-V17
|Podoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
vB_RpoP-V21
|Podoviridae |Ruegeria pomeroyi DSS3 |Baltimore Inner Harbor, USA |
DS-1410Ws-06{{Cite journal |last1=Li |first1=Baolian |last2=Zhang |first2=Si |last3=Long |first3=Lijuan |last4=Huang |first4=Sijun |date=2016-09-01 |title=Characterization and Complete Genome Sequences of Three N4-Like Roseobacter Phages Isolated from the South China Sea |url=https://link.springer.com/article/10.1007/s00284-016-1071-3 |journal=Current Microbiology |language=en |volume=73 |issue=3 |pages=409–418 |doi=10.1007/s00284-016-1071-3 |pmid=27270945 |issn=1432-0991|url-access=subscription }}
|Podoviridae |Dinoroseobacter shibae DFL12 and Roseobacter dinitrificans OCh114 |Sanya Bay, Northern South China Sea |
RD-1410W1-01
|Podoviridae |Dinoroseobacter shibae DFL12, Roseobacter dinitrificans OCh114 |Sanya Bay, Northern South China Sea |
RD-1410Ws-07
|Podoviridae |Roseobacter dinitrificans OCh114 |Sanya Bay, Northern South China Sea |
P12053L
|Podoviridae |Celeribacter sp. strain IMCC12053 |Yellow Sea |
LenP_VB1
|Podoviridae |Lentibacter sp. SH36 | |
LenP_VB2
|Podoviridae |Lentibacter sp. SH36 | |
LenP_VB3
|Podoviridae |Lentibacter sp. SH36 | |
SIO1-1989
|Podoviridae |Roseobacter SIO67 |Scripps Pier, California |
SIO1-2001
|Podoviridae |Roseobacter SIO67 |Scripps Pier, California |
OS-2001
|Podoviridae |Roseobacter SIO67 |Oceanside, California |
SBRSIO67-2001
|Podoviridae |Roseobacter SIO67, Roseobacter GAI-101 |Solana Beach, California |
MB-2001
|Podoviridae |Roseobacter SIO67 |Mission Bay, California |
R26L
|Siphoviridae-like |Dinoroseobacter shibae DFL12T |Pearl River Estuary, China |
ICBM1{{Cite journal |last1=Bischoff |first1=Vera |last2=Bunk |first2=Boyke |last3=Meier-Kolthoff |first3=Jan P |last4=Spröer |first4=Cathrin |last5=Poehlein |first5=Anja |last6=Dogs |first6=Marco |last7=Nguyen |first7=Mary |last8=Petersen |first8=Jörn |last9=Daniel |first9=Rolf |last10=Overmann |first10=Jörg |last11=Göker |first11=Markus |last12=Simon |first12=Meinhard |last13=Brinkhoff |first13=Thorsten |last14=Moraru |first14=Cristina |date=2019-06-01 |title=Cobaviruses – a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems |journal=The ISME Journal |language=en |volume=13 |issue=6 |pages=1404–1421 |doi=10.1038/s41396-019-0362-7 |issn=1751-7362 |pmc=6775973 |pmid=30718806|bibcode=2019ISMEJ..13.1404B }}
|Podoviridae |Lentibacter sp. SH36 |Southern North Sea |
ICBM2
|Podoviridae |Lentibacter sp. SH36 |Southern North Sea |
Tedan{{Cite journal |last1=Baum |first1=Lisa |last2=Nguyen |first2=Mary T. H. D. |last3=Jia |first3=Yunke |last4=Biazik |first4=Joanna |last5=Thomas |first5=Torsten |date=2021 |title=Characterization of a novel roseophage and the morphological and transcriptional response of the sponge symbiont Ruegeria AU67 to infection |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.15474 |journal=Environmental Microbiology |language=en |volume=23 |issue=5 |pages=2532–2549 |doi=10.1111/1462-2920.15474 |pmid=33754443 |bibcode=2021EnvMi..23.2532B |issn=1462-2920|url-access=subscription }}
|Siphoviridae |Ruegeria pomeroyi AU67 |
vB_DshP-R1
|Podoviridae |Dinoroseobacter shibae DFL12 |Baicheng Harbor, Xiamen |
vB_DshP-R2C
|Podoviridae |Dinoroseobacter shibae DFL12 |Huangcuo station, Xiamen |
vB_DshS-R4C{{Cite journal |last1=Huang |first1=Yang |last2=Sun |first2=Hui |last3=Wei |first3=Shuzhen |last4=Cai |first4=Lanlan |last5=Liu |first5=Liqin |last6=Jiang |first6=Yanan |last7=Xin |first7=Jiabao |last8=Chen |first8=Zhenqin |last9=Que |first9=Yuqiong |last10=Kong |first10=Zhibo |last11=Li |first11=Tingting |last12=Yu |first12=Hai |last13=Zhang |first13=Jun |last14=Gu |first14=Ying |last15=Zheng |first15=Qingbing |date=2023-06-17 |title=Structure and proposed DNA delivery mechanism of a marine roseophage |journal=Nature Communications |language=en |volume=14 |issue=1 |pages=3609 |doi=10.1038/s41467-023-39220-y |issn=2041-1723 |pmc=10276861 |pmid=37330604|bibcode=2023NatCo..14.3609H }}
|Siphoviridae |Dinoroseobacter shibae DFL12T |coastal waters of Xiamen |
vB_DshS-R5C
|Siphoviridae |Dinoroseobacter shibae DFL12 |South China Sea |
Ecology
File:TEM_micrograph_of_RLP1_and_RPP1.jpg
Unable to replicate on their own, viruses must rely on bacteria in a symbiotic relationship.{{Cite journal |last=Roossinck |first=Marilyn J. |date=2015-06-03 |title=Move Over, Bacteria! Viruses Make Their Mark as Mutualistic Microbial Symbionts |journal=Journal of Virology |volume=89 |issue=13 |pages=6532–6535 |doi=10.1128/jvi.02974-14 |pmc=4468468 |pmid=25903335}} Roseophages have shown to boost DNA synthesis within Roseobacteria due to 4 AMGs: vB_DshP-R7L_gp29 (dcd) encoding dCMP deaminase, vB_DshP-R7L_gp32 (thyX) encoding thymidylate synthase, vB_DshP-R7L_gp43 (trx) encoding thioredoxin, vB_DshP-R7L_gp55 (rnr) encoding ribonucleotide reductase.{{Cite journal |last1=Huang |first1=Xingyu |last2=Yu |first2=Chen |last3=Lu |first3=Longfei |date=March 25, 2025 |title=Isolation and characterization of a roseophage representing a novel genus in the N4-like Rhodovirinae subfamily distributed in estuarine waters |journal=BMC Genomics |volume=26 |issue=295|page=295 |doi=10.1186/s12864-025-11463-7 |doi-access=free |pmid=40133813 |pmc=11934525 }} DCMP deaminase (Dcd gene) converts deoxycytidine monophosphate (dCMP) to deoxyuridine monophosphate (dUMP). Thioredoxin reductase (trx gene) acts as a proton donor transferring protons from nicotinamide adenine dinucleotide phosphate (NADPH) to ribonucleotide reductase (rnr gene) reducing ribonucleoside diphosphate (rNDP) to deoxyribonucleoside diphosphate (dNDP). Thymidylate synthase (thyX gene) aids in pyrimidine synthesis converting dUMP to deoxythymidine monophosphate (dTMP). In all the prior metabolic pathways, roseophage AMGs provide genes that encode for proteins necessary for DNA synthesis for the host Roseobacteria.
In a process known as viral shunt, roseophages prevent the uptake of carbon and nutrients from higher trophic levels in the form of particulate organic matter (POM) and recycle matter as dissolved organic matter (DOM).{{Cite journal |last1=Brown |first1=Teagan L |last2=Charity |first2=Oliver J |last3=Adriaenssens |first3=Evelien M |date=2022-12-01 |title=Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut |journal=Current Opinion in Microbiology |volume=70 |pages=102229 |doi=10.1016/j.mib.2022.102229 |pmid=36347213 |issn=1369-5274|doi-access=free }} As an integral part of the microbial loop, the lysis of Roseobacteria by roseophages recycles nutrients and organic matter back into the surrounding environment. This can optimize the effects of the biological pump in carbon sequestration producing larger primary producers like phytoplankton which can absorb more atmospheric carbon and sequester it into the deep ocean.{{Cite journal |last1=Nowicki |first1=Michael |last2=DeVries |first2=Tim |last3=Siegel |first3=David A. |date=2022 |title=Quantifying the Carbon Export and Sequestration Pathways of the Ocean's Biological Carbon Pump |journal=Global Biogeochemical Cycles |language=en |volume=36 |issue=3 |pages=e2021GB007083 |doi=10.1029/2021GB007083 |bibcode=2022GBioC..3607083N |issn=1944-9224|doi-access=free }}{{Cite journal |last1=Dang |first1=Chansotheary |last2=Morrissey |first2=Ember M. |date=2024 |title=The size and diversity of microbes determine carbon use efficiency in soil |url=https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.16633 |journal=Environmental Microbiology |language=en |volume=26 |issue=5 |pages=e16633 |doi=10.1111/1462-2920.16633 |pmid=38733078 |bibcode=2024EnvMi..26E6633D |issn=1462-2920|url-access=subscription }}
Roseophages have shown potential to improve utilization of carbon and nitrogen sources in estuaries through the specific auxiliary metabolic gene vB_DshP-R7L_gp40 (nanS) which codes for Sialate O-acetylesterase. Sialic acids are sources of carbon and nitrogen however cannot be metabolized in their acetylated form. Sialate O-acetylesterase hydrolyze acetyl groups from sialic acids which can be readily taken up and metabolized by other microbes.{{Cite journal |last1=Mandal |first1=Chandan |last2=Mandal |first2=Chhabinath |last3=Chandra |first3=Sarmila |last4=Schauer |first4=Roland |last5=Mandal |first5=Chitra |date=2012-01-01 |title=Regulation of O-acetylation of sialic acids by sialate-O-acetyltransferase and sialate-O-acetylesterase activities in childhood acute lymphoblastic leukemia |url=https://academic.oup.com/glycob/article-abstract/22/1/70/1987996?redirectedFrom=fulltext |journal=Glycobiology |volume=22 |issue=1 |pages=70–83 |doi=10.1093/glycob/cwr106 |pmid=21803834 |issn=0959-6658}} Indirectly, roseophages could increase microbial uptake of nitrogen and carbon in estuaries enhancing productivity of metabolic functions which aid in the removal or degradation of pathogens or pollutants.{{Citation |last1=Singh |first1=Manoj Kumar |title=Bioaugmentation for the treatment of waterborne pathogen contamination water |date=2020 |journal=Waterborne Pathogens |pages=189–203 |publisher=Elsevier |language=en |doi=10.1016/B978-0-12-818783-8.00010-4 |isbn=978-0-12-818783-8 |pmc=7153333 |last2=Maurya |first2=Anurag |last3=Kumar |first3=Sushil}} As estuaries are an important aspect to nourish aquaculture and improve water for recreational use, applications of roseophages in estuaries as a waste water treatment technique could improve current water treatment strategies and further improve the quality of water in areas abundant in roseophages.{{Cite journal |last1=Oyetibo |first1=Ganiyu Oladunjoye |last2=Miyauchi |first2=Keisuke |last3=Huang |first3=Yi |last4=Chien |first4=Mei-Fang |last5=Ilori |first5=Matthew Olusoji |last6=Amund |first6=Olukayode Oladipo |last7=Endo |first7=Ginro |date=2017-04-01 |title=Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants |url=https://linkinghub.elsevier.com/retrieve/pii/S0964830516304929 |journal=International Biodeterioration & Biodegradation |series=Environmental Biotechnologies for Sustainable Development (EBSuD) |volume=119 |pages=614–625 |doi=10.1016/j.ibiod.2016.10.005 |bibcode=2017IBiBi.119..614O |issn=0964-8305|url-access=subscription }}{{Cite journal |last1=Crump |first1=Byron C. |last2=Bowen |first2=Jennifer L. |date=2024-01-17 |title=The Microbial Ecology of Estuarine Ecosystems |journal=Annual Review of Marine Science |language=en |volume=16 |issue=16|pages=335–360 |doi=10.1146/annurev-marine-022123-101845 |pmid=37418833 |issn=1941-1405|doi-access=free }}
{{clear}}