rule of mixtures

{{Short description|Relation between properties and composition of a compound}}

File:Composite elastic modulus.svg

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material .{{cite book|last=Alger|first=Mark. S. M.|title=Polymer Science Dictionary|edition=2nd|year=1997|publisher=Springer Publishing|isbn=0412608707}}{{cite web|url=http://www.doitpoms.ac.uk/tlplib/fibre_composites/stiffness.php|title=Stiffness of long fibre composites|publisher=University of Cambridge|accessdate=1 January 2013}}{{cite book|last1=Askeland|first1=Donald R.|last2=Fulay|first2=Pradeep P.|last3=Wright|first3=Wendelin J.|title=The Science and Engineering of Materials|edition=6th|date=2010-06-21|publisher=Cengage Learning|isbn=9780495296027}} It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, ultimate tensile strength, thermal conductivity, and electrical conductivity. In general there are two models, one for axial loading (Voigt model),{{cite journal|last=Voigt|first=W.|title=Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper|journal=Annalen der Physik|year=1889|volume=274|issue=12 |pages=573–587|doi=10.1002/andp.18892741206|bibcode = 1889AnP...274..573V |url=https://zenodo.org/record/1423864}} and one for transverse loading (Reuss model).{{cite journal|last=Reuss|first=A.|title=Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle|journal=Zeitschrift für Angewandte Mathematik und Mechanik|year=1929|volume=9|issue=1 |pages=49–58|doi=10.1002/zamm.19290090104|bibcode=1929ZaMM....9...49R}}

In general, for some material property E (often the elastic modulus), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as

: E_c = fE_f + \left(1-f\right)E_m

where

  • f = \frac{V_f}{V_f + V_m} is the volume fraction of the fibers
  • E_f is the material property of the fibers
  • E_m is the material property of the matrix

In the case of the elastic modulus, this is known as the upper-bound modulus, and corresponds to loading parallel to the fibers. The inverse rule of mixtures states that in the direction perpendicular to the fibers, the elastic modulus of a composite can be as low as

:E_c = \left(\frac{f}{E_f} + \frac{1-f}{E_m}\right)^{-1}.

If the property under study is the elastic modulus, this quantity is called the lower-bound modulus, and corresponds to a transverse loading.

Derivation for elastic modulus

= Voigt Modulus =

Consider a composite material under uniaxial tension \sigma_\infty. If the material is to stay intact, the strain of the fibers, \epsilon_f must equal the strain of the matrix, \epsilon_m. Hooke's law for uniaxial tension hence gives

{{NumBlk|:|\frac{\sigma_f}{E_f} = \epsilon_f = \epsilon_m = \frac{\sigma_m}{E_m}|{{EquationRef|1}}}}

where \sigma_f, E_f, \sigma_m, E_m are the stress and elastic modulus of the fibers and the matrix, respectively. Noting stress to be a force per unit area, a force balance gives that

{{NumBlk|:|\sigma_\infty = f\sigma_f + \left(1-f\right)\sigma_m|{{EquationRef|2}}}}

where f is the volume fraction of the fibers in the composite (and 1-f is the volume fraction of the matrix).

If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law \sigma_\infty = E_c\epsilon_c for some elastic modulus of the composite E_c and some strain of the composite \epsilon_c, then equations {{EquationNote|1}} and {{EquationNote|2}} can be combined to give

:E_c\epsilon_c = fE_f\epsilon_f + \left(1-f\right)E_m\epsilon_m.

Finally, since \epsilon_c = \epsilon_f = \epsilon_m, the overall elastic modulus of the composite can be expressed as{{cite web|url=http://www.doitpoms.ac.uk/tlplib/bones/derivation_mixture_rules.php|title=Derivation of the rule of mixtures and inverse rule of mixtures|publisher=University of Cambridge|accessdate=1 January 2013}}

: E_c = fE_f + \left(1-f\right)E_m.

= Reuss modulus =

Now let the composite material be loaded perpendicular to the fibers, assuming that \sigma_\infty = \sigma_f = \sigma_m. The overall strain in the composite is distributed between the materials such that

:\epsilon_c = f\epsilon_f + \left(1-f\right)\epsilon_m.

The overall modulus in the material is then given by

:E_c = \frac{\sigma_\infty}{\epsilon_c} = \frac{\sigma_f}{f\epsilon_f + \left(1-f\right)\epsilon_m} = \left(\frac{f}{E_f} + \frac{1-f}{E_m}\right)^{-1}

since \sigma_f=E\epsilon_f, \sigma_m=E\epsilon_m.

Other properties

Similar derivations give the rules of mixtures for

  • mass density:\left(\frac{f}{\rho_f}+\frac{1-f}{\rho_c}\right)^{-1} \leq\rho_f\centerdot f+\rho_M\centerdot (1-f) where f is the atomic percent of fiber in the mixture.
  • ultimate tensile strength:\left(\frac{f}{\sigma_{UTS,f}} + \frac{1-f}{\sigma_{UTS,m}}\right)^{-1} \leq \sigma_{UTS,c} \leq f\sigma_{UTS,f} + \left(1-f\right)\sigma_{UTS,m}
  • thermal conductivity:\left(\frac{f}{k_f} + \frac{1-f}{k_m}\right)^{-1} \leq k_c \leq fk_f + \left(1-f\right)k_m
  • electrical conductivity:\left(\frac{f}{\sigma_f} + \frac{1-f}{\sigma_m}\right)^{-1} \leq \sigma_c \leq f\sigma_f + \left(1-f\right)\sigma_m

See also

When considering the empirical correlation of some physical properties and the chemical composition of compounds, other relationships, rules, or laws, also closely resembles the rule of mixtures:

References

{{reflist}}