rule of replacement

{{Short description|Inference rule that may be applied to only a particular segment of an expression}}

{{Transformation rules}}

In logic, a rule of replacement{{cite book |last1=Copi |first1=Irving M. |last2=Cohen |first2=Carl |title=Introduction to Logic |publisher=Prentice Hall |year=2005}}{{cite book |title=A Concise Introduction to Logic 4th edition |url=https://archive.org/details/studyguidetoacco00burc |url-access=registration |last=Hurley |first=Patrick |year=1991 |publisher=Wadsworth Publishing |isbn=9780534145156 }}Moore and Parker {{full|date=September 2019}} is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a whole logical expression, a rule of replacement may be applied to only a particular segment. Within the context of a logical proof, logically equivalent expressions may replace each other. Rules of replacement are used in propositional logic to manipulate propositions.

Common rules of replacement include de Morgan's laws, commutation, association, distribution, double negation,{{efn|not admitted in intuitionistic logic}} transposition, material implication, logical equivalence, exportation, and tautology.

Table: Rules of Replacement

The rules above can be summed up in the following table.Kenneth H. Rosen: Discrete Mathematics and its Applications, Fifth Edition, p. 58. The "Tautology" column shows how to interpret the notation of a given rule.

class="wikitable"

!Rules of inference

!Tautology

!Name

\begin{align}

(p \vee q) \vee r\\

\therefore \overline{p \vee (q \vee r)} \\

\end{align}

|((p \vee q) \vee r) \rightarrow (p \vee (q \vee r))

|Associative

\begin{align}

p \wedge q\\

\therefore \overline{q \wedge p} \\

\end{align}

|(p \wedge q) \rightarrow (q \wedge p)

|Commutative

\begin{align}

(p \wedge q) \rightarrow r\\

\therefore \overline{p \rightarrow (q \rightarrow r)} \\

\end{align}

|((p \wedge q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))

|Exportation

\begin{align}

p \rightarrow q\\

\therefore \overline{\neg q \rightarrow \neg p} \\

\end{align}

|(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)

|Transposition or contraposition law

\begin{align}

p \rightarrow q\\

\therefore \overline{\neg p \vee q} \\

\end{align}

|(p \rightarrow q) \rightarrow (\neg p \vee q)

|Material implication

\begin{align}

(p \vee q) \wedge r\\

\therefore \overline{(p \wedge r) \vee (q \wedge r)} \\

\end{align}

|((p \vee q) \wedge r) \rightarrow ((p \wedge r) \vee (q \wedge r))

|Distributive

\begin{align}

p\\

q\\

\therefore \overline{p \wedge q} \\

\end{align}

|((p) \wedge (q)) \rightarrow (p \wedge q)

|Conjunction

\begin{align}

p\\

\therefore \overline{\neg \neg p} \\

\end{align}

|p \rightarrow (\neg \neg p)

|Double negation introduction

\begin{align}

{\neg \neg p}\\

\therefore \overline p\\

\end{align}

|(\neg \neg p) \rightarrow p

|Double negation elimination

See also

Notes

{{Notelist}}

References