schreibersite

{{short description|Iron nickel phosphide mineral usually found in meteorites}}

{{infobox mineral

| name = Schreibersite

| category = Phosphide mineral
Meteorite mineral

| boxwidth =

| image = Gebel-Kamil-slice-10.7g.jpg

| imagesize = 260px

| alt =

| caption =

| formula = {{chem2|(Fe,Ni)3P}}

| IMAsymbol = Scb{{Cite journal|last=Warr|first=L.N.|date=2021|title=IMA–CNMNC approved mineral symbols|journal=Mineralogical Magazine|volume=85|issue=3 |pages=291–320|doi=10.1180/mgm.2021.43 |bibcode=2021MinM...85..291W |s2cid=235729616 |doi-access=free}}

| molweight =

| strunz = 1.BD.05

| dana = 01.01.21.02

| system = Tetragonal

| class = Disphenoidal ({{overline|4}})
H-M symbol: ({{overline|4}})

| symmetry = I{{overline|4}}

| color = Silver-white to tin-white, tarnishes brass-yellow or brown

| habit = Rarely in crystals, hoppered, plates, tablets, rods or needles

| twinning =

| cleavage = {001} perfect, {010} indistinct, {110} indistinct

| fracture =

| tenacity = Very brittle

| mohs = 6.5–7

| luster = Brilliant metallic

| streak = Dark gray

| diaphaneity = Opaque

| gravity = 7.0–7.3

| density =

| polish =

| opticalprop = Uniaxial

| refractive =

| birefringence =

| pleochroism =

| 2V =

| dispersion =

| extinction =

| length fast/slow =

| fluorescence=

| absorption =

| melt =

| fusibility =

| diagnostic =

| solubility =

| other =

| alteration =

| references = [http://www.mindat.org/min-3582.html Schreibersite]. Mindat.{{cite book|editor1=Anthony, John W. |editor2=Bideaux, Richard A. |editor3=Bladh, Kenneth W. |editor4=Nichols, Monte C. |title= Handbook of Mineralogy|publisher= Mineralogical Society of America|place= Chantilly, VA, US|chapter-url=http://rruff.geo.arizona.edu/doclib/hom/schreibersite.pdf|chapter=Schreibersite|isbn=978-0962209727 |volume=IV (Arsenates, Phosphates, Vanadates)|year=2000}}

}}

Schreibersite is generally a rare iron nickel phosphide mineral, {{chem2|(Fe,Ni)3P}}, though common in iron-nickel meteorites. It has been found on Disko Island in Greenland[http://www.eurekalert.org/pub_releases/2013-04/uol-pbp040413.php "Power behind primordial soup discovered"], Eurekalert, April 4, 2013 and Illinois.{{Cite journal |last1=Hess |first1=Benjamin L. |last2=Piazolo |first2=Sandra |last3=Harvey |first3=Jason |date=2021-03-16 |title=Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth |url= |journal=Nature Communications |volume=12 |issue=1 |pages=1535 |language=en |doi=10.1038/s41467-021-21849-2 |pmc=7966383 |pmid=33727565|bibcode=2021NatCo..12.1535H }}{{Cite web |last=Temming |first=Maria |date=2021-04-10 |title=Phosphorus for Earth's earliest life may have been forged by lightning |url=https://www.sciencenews.org/article/phosphorus-earth-earliest-life-forged-lightning-chemistry |access-date=2021-04-02 |website=Science News}}

Another name used for the mineral is rhabdite. It forms tetragonal crystals with perfect 001 cleavage. Its color ranges from bronze to brass yellow to silver white. It has a density of 7.5 and a hardness of 6.5 – 7. It is opaque with a metallic luster and a dark gray streak. It was named after the Austrian scientist Carl Franz Anton Ritter von Schreibers (1775–1852), who was one of the first to describe it from iron meteorites.[http://webmineral.com/data/Schreibersite.shtml Schreibersite]. Webmineral

Schreibersite is reported from the Magura Meteorite, Arva-(present name – Orava), Slovak Republic; the Sikhote-Alin Meteorite in eastern Russia; the São Julião de Moreira Meteorite, Viana do Castelo, Portugal; the Gebel Kamil (meteorite) in Egypt; and numerous other locations including the Moon.{{cite book|author=Hunter R. H. |author2= Taylor L. A. |year=1982|title= Lunar and Planetary Science Conference, 12th, Houston, TX, March 16–20, 1981, Proceedings. Section 1. (A82-31677 15–91)|place= New York and Oxford|publisher= Pergamon Press|pages=253–259|chapter=Rust and schreibersite in Apollo 16 highland rocks – Manifestations of volatile-element mobility |bibcode=1982LPSC...12..253H}}

In 2007, researchers reported that schreibersite and other meteoric phosphorus bearing minerals may be the ultimate source for the phosphorus that is so important for life on Earth.[http://www.innovations-report.com/html/reports/earth_sciences/report-32724.html Report of U of A Extra-terrestrial Phosphorus]{{cite book|chapter-url=http://books.nap.edu/openbook.php?record_id=11919&page=56 |page=56|title=The Limits of Organic Life in Planetary Systems |year=2007|chapter= 5.2.3. The Origin of Phosphorus|isbn=978-0309104845|publisher=National Academies Press|doi=10.17226/11919}}Sasso, Anne (January 3, 2005) [http://discovermagazine.com/2005/jan/fifth-element-from-meteors Life's Fifth Element Came From Meteors]. Discover Magazine. In 2013, researchers reported that they had successfully produced pyrophosphite, a possible precursor to pyrophosphate, the molecule associated with ATP, a co-enzyme central to energy metabolism in all life on Earth. Their experiment consisted of subjecting a sample of schreibersite to a warm, acidic environment typically found in association with volcanic activity, activity that was far more common on the primordial Earth. They hypothesized that their experiment might represent what they termed "chemical life", a stage of evolution which may have led to the emergence of fully biological life as exists today.{{Cite journal | doi = 10.1016/j.gca.2012.12.043| title = Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth| journal = Geochimica et Cosmochimica Acta| volume = 109| pages = 90–112| year = 2013| last1 = Bryant | first1 = D. E. | last2 = Greenfield | first2 = D. | last3 = Walshaw | first3 = R. D. | last4 = Johnson | first4 = B. R. G. | last5 = Herschy | first5 = B. | last6 = Smith | first6 = C. | last7 = Pasek | first7 = M. A. | last8 = Telford | first8 = R. | last9 = Scowen | first9 = I. | last10 = Munshi | first10 = T. | last11 = Edwards | first11 = H. G. M. | last12 = Cousins | first12 = C. R. | last13 = Crawford | first13 = I. A. | last14 = Kee | first14 = T. P. | bibcode = 2013GeCoA.109...90B}}

Lightning strikes may have provided an alternative source of reduced phosphorus species for the synthesis of early biomolecules.{{Cite journal |last1=Pasek |first1=Matthew |last2=Block |first2=Kristin |date=2009-07-13 |title=Lightning-induced reduction of phosphorus oxidation state |url=https://www.nature.com/articles/ngeo580 |access-date=2021-04-02 |journal=Nature Geoscience |volume=2 |issue=8 |pages=553–556 |language=en |doi=10.1038/ngeo580|bibcode=2009NatGe...2..553P |url-access=subscription }}

See also

References

{{Reflist}}