semigroup with two elements

{{Short description|Example of a Semigroup}}

{{more footnotes|date=July 2024}}

In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five nonisomorphic semigroups having two elements:

  • O2, the null semigroup of order two.
  • LO2, the left zero semigroup of order two.
  • RO2, the right zero semigroup of order two.
  • ({0,1}, ∧) (where "∧" is the logical connective "and"), or equivalently the set {0,1} under multiplication: the only semilattice with two elements and the only non-null semigroup with zero of order two, also a monoid, and ultimately the two-element Boolean algebra; this is also isomorphic to (Z2, ·2), the multiplicative group of {0,1} modulo 2.
  • (Z2, +2) (where Z2 = {0,1} and "+2" is "addition modulo 2"), or equivalently ({0,1}, ⊕) (where "⊕" is the logical connective "xor"), or equivalently the set {−1,1} under multiplication: the only group of order two.

The semigroups LO2 and RO2 are antiisomorphic. O2, {{nowrap|({0,1}, ∧)}} and {{nowrap|(Z2, +2)}} are commutative, and LO2 and RO2 are noncommutative. LO2, RO2 and {{nowrap|({0,1}, ∧)}} are bands.

Determination of semigroups with two elements

Choosing the set {{nowrap|1=A = {{mset| 1, 2 }}}} as the underlying set having two elements, sixteen binary operations can be defined in A. These operations are shown in the table below. In the table, a matrix of the form

class="wikitable" style="margin:1em auto;"
  x 

y 

  z 

t 

indicates a binary operation on A having the following Cayley table.

class="wikitable" style="margin:1em auto;"
! 1 

! 2 

  1 

x 

y 

  2 

z 

t 

style="margin:1em auto; width:85%;" border="1"

|+List of binary operations in {{mset| 1, 2 }}

align="center"|

{| class="wikitable" style="background:#87CEEB"

  1 

|  1 

  1 

|  1 

|align="center"|

class="wikitable" style="background:#ADFF2F"
  1 

|  1 

  1 

|  2 

|align="center"|

class="wikitable"
  1 

|  1 

  2 

|  1 

|align="center"|

class="wikitable" style="background:#FFA500"
  1 

|  1 

  2 

|  2 

|-

Null semigroup O2  

|  ≡ Semigroup {{nowrap|({{mset|0,1}}, \wedge)}} 

|  {{nowrap|1=2·(1·2) = 2}}, {{nowrap|1=(2·1)·2 = 1}} 

Left zero semigroup LO2 

|-

|align="center"|

class="wikitable"
  1 

|  2 

  1 

|  1 

|align="center"|

class="wikitable" style="background:#E0B0FF"
  1 

|  2 

  1 

|  2 

|align="center"|

class="wikitable" style="background:#FF4500"
  1 

|  2 

  2 

|  1 

|align="center"|

class="wikitable" style="background:#ADFF2F"
  1 

|  2 

  2 

|  2 

|-

|  {{nowrap|1=2·(1·2) = 1}}, {{nowrap|1=(2·1)·2 = 2}} 

Right zero semigroup RO2 

|  ≡ Group {{nowrap|(Z2, ·2)}} 

|  ≡ Semigroup {{nowrap|({{mset|0,1}}, \wedge)}}

|-

|align="center"|

class="wikitable"
  2 

|  1 

  1 

|  1 

| align="center"|

class="wikitable" style="background:#FF4500"
  2 

|  1 

  1 

|  2 

| align="center"|

class="wikitable"
  2 

|  1 

  2 

|  1 

|align="center"|

class="wikitable"
  2 

|  1 

  2 

|  2 

|-

|  {{nowrap|1=1·(1·2) = 2}}, {{nowrap|1=(1·1)·2 = 1}} 

|  ≡ Group {{nowrap|(Z2, +2)}} 

|  {{nowrap|1=1·(1·1) = 1}}, {{nowrap|1=(1·1)·1 = 2}} 

|  {{nowrap|1=1·(2·1) = 1}}, {{nowrap|1=(1·2)·1 = 2}} 

|-

|align="center"|

class="wikitable"
  2 

|  2 

  1 

|  1 

|align="center"|

class="wikitable"
  2 

|  2 

  1 

|  2 

|align="center"|

class="wikitable"
  2 

|  2 

  2 

|  1 

|align="center"|

class="wikitable" style="background:#87CEEB"
  2 

|  2 

  2 

|  2 

|-

|  {{nowrap|1=1·(1·1) = 2}}, {{nowrap|1=(1·1)·1 = 1}} 

|  {{nowrap|1=1·(2·1) = 2}}, {{nowrap|1=(1·2)·1 = 1}} 

|  {{nowrap|1=1·(1·2) = 2}}, {{nowrap|1=(1·1)·2 = 1}} 

Null semigroup O2 

|}

In this table:

  • The semigroup {{nowrap|({0,1}, \wedge)}} denotes the two-element semigroup containing the zero element 0 and the unit element 1. The two binary operations defined by matrices in a green background are associative and pairing either with A creates a semigroup isomorphic to the semigroup {{nowrap|({0,1}, \wedge)}}. Every element is idempotent in this semigroup, so it is a band. Furthermore, it is commutative (abelian) and thus a semilattice. The order induced is a linear order, and so it is in fact a lattice and it is also a distributive and complemented lattice, i.e. it is actually the two-element Boolean algebra.
  • The two binary operations defined by matrices in a blue background are associative and pairing either with A creates a semigroup isomorphic to the null semigroup O2 with two elements.
  • The binary operation defined by the matrix in an orange background is associative and pairing it with A creates a semigroup. This is the left zero semigroup LO2. It is not commutative.
  • The binary operation defined by the matrix in a purple background is associative and pairing it with A creates a semigroup. This is the right zero semigroup RO2. It is also not commutative.
  • The two binary operations defined by matrices in a red background are associative and pairing either with A creates a semigroup isomorphic to the group {{nowrap|(Z2, +2)}}.
  • The remaining eight binary operations defined by matrices in a white background are not associative and hence none of them create a semigroup when paired with A.

The two-element semigroup ({0,1}, ∧)

The Cayley table for the semigroup ({0,1}, \wedge) is given below:

class="wikitable" style="margin:1em auto;"
 \wedge

! 0 

! 1 

  0 

|  0 

|  0 

  1 

|  0 

|  1 

This is the simplest non-trivial example of a semigroup that is not a group. This semigroup has an identity element, 1, making it a monoid. It is also commutative. It is not a group because the element 0 does not have an inverse, and is not even a cancellative semigroup because we cannot cancel the 0 in the equation 1·0 = 0·0.

This semigroup arises in various contexts. For instance, if we choose 1 to be the truth value "true" and 0 to be the truth value "false" and the operation to be the logical connective "and", we obtain this semigroup in logic. It is isomorphic to the monoid {0,1} under multiplication. It is also isomorphic to the semigroup

:

S = \left\{

\begin{pmatrix}

1 & 0 \\

0 & 1

\end{pmatrix},

\begin{pmatrix}

1 & 0 \\

0 & 0

\end{pmatrix}

\right\}

under matrix multiplication.

The two-element semigroup (Z<sub>2</sub>, +<sub>2</sub>)

The Cayley table for the semigroup {{nowrap|(Z2, +2)}} is given below:

class="wikitable" style="margin:1em auto;"
+2

! 0 

! 1 

  0 

|  0 

|  1 

  1 

|  1 

|  0 

This group is isomorphic to the cyclic group Z2 and the symmetric group S2.

Semigroups of order 3

{{main|Semigroup with three elements}}

Let A be the three-element set {{nowrap|{{mset|1, 2, 3}}}}. Altogether, a total of 39 = 19683 different binary operations can be defined on A. 113 of the 19683 binary operations determine 24 nonisomorphic semigroups, or 18 non-equivalent semigroups (with equivalence being isomorphism or anti-isomorphism).

{{cite journal|last=Friðrik Diego|author2=Kristín Halla Jónsdóttir |title=Associative Operations on a Three-Element Set|journal=The Montana Mathematics Enthusiast|date=July 2008|volume=5|issue=2 & 3|pages=257–268|doi=10.54870/1551-3440.1106 |s2cid=118704099 |url=http://www.math.umt.edu/tmme/vol5no2and3/TMME_vol5nos2and3_a8_pp.257_268.pdf|accessdate=6 February 2014}} With the exception of the group with three elements, each of these has one (or more) of the above two-element semigroups as subsemigroups.Andreas Distler, [http://bcc2009.mcs.st-and.ac.uk/Theses/andreasDthesis.pdf Classification and enumeration of finite semigroups] {{webarchive|url=https://web.archive.org/web/20150402121217/http://bcc2009.mcs.st-and.ac.uk/Theses/andreasDthesis.pdf |date=2 April 2015 }}, PhD thesis, University of St. Andrews For example, the set {{nowrap|{{mset|−1, 0, 1}}}} under multiplication is a semigroup of order 3, and contains both {{nowrap|{{mset|0, 1}}}} and {{nowrap|{{mset|−1, 1}}}} as subsemigroups.

Finite semigroups of higher orders

Algorithms and computer programs have been developed for determining nonisomorphic finite semigroups of a given order. These have been applied to determine the nonisomorphic semigroups of small order.{{cite journal

| last1 = Crvenković | first1 = Siniša

| last2 = Stojmenović | first2 = Ivan

| issue = 2

| journal = Zbornik Radova Prirodno-Matematichkog Fakulteta. Serija za Matematiku. Review of Research. Faculty of Science. Mathematics Series

| mr = 1333549

| pages = 221–231

| title = An algorithm for Cayley tables of algebras

| url = https://www.emis.de/journals/NSJOM/Papers/23_2/NSJOM_23_2_221_231.pdf

| volume = 23

| year = 1993}}{{Cite book |last=John A Hildebrant |title=Handbook of Finite Semigroup Programs |publisher=(Preprint) |year=2001}}[http://www.math.lsu.edu/~preprint/2001/jah2001a.pdf] The number of nonisomorphic semigroups with n elements, for n a nonnegative integer, is listed under {{OEIS2C|A027851}} in the On-Line Encyclopedia of Integer Sequences. {{OEIS2C|A001423}} lists the number of non-equivalent semigroups, and {{OEIS2C|A023814}} the number of associative binary operations, out of a total of nn2, determining a semigroup.

See also

References

{{Reflist}}

{{Use dmy dates|date=April 2020}}

{{Authority control}}

{{DEFAULTSORT:Semigroup With Two Elements}}

Category:Algebraic structures

Category:Semigroup theory