squirmer

{{Short description|Model in fluid dynamics}}

File:Shaker pusher.png

The squirmer is a model for a spherical microswimmer swimming in Stokes flow. The squirmer model was introduced by James Lighthill in 1952 and refined and used to model Paramecium by John Blake in 1971.{{cite journal|last1=Lighthill|first1=M. J.|title=On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers|journal=Communications on Pure and Applied Mathematics|volume=5|issue=2|year=1952|pages=109–118|issn=0010-3640|doi=10.1002/cpa.3160050201}}

{{cite journal|last1=Blake|first1=J. R.|title=A spherical envelope approach to ciliary propulsion|journal=Journal of Fluid Mechanics|volume=46|issue=1|year=1971|pages=199–208|issn=0022-1120|doi=10.1017/S002211207100048X|bibcode=1971JFM....46..199B|s2cid=122519123 }}

Blake used the squirmer model to describe the flow generated by a carpet of beating short filaments called cilia on the surface of Paramecium. Today, the squirmer is a standard model for the study of self-propelled particles, such as Janus particles, in Stokes flow.{{cite journal|last1=Bickel|first1=Thomas|last2=Majee|first2=Arghya|last3=Würger|first3=Alois|title=Flow pattern in the vicinity of self-propelling hot Janus particles|journal=Physical Review E|volume=88|issue=1|year=2013|issn=1539-3755|doi=10.1103/PhysRevE.88.012301|arxiv=1401.7311|bibcode=2013PhRvE..88a2301B|pmid=23944457|page=012301|s2cid=36558271 }}

Velocity field in particle frame

Here we give the flow field of a squirmer in the case of a non-deformable axisymmetric spherical squirmer (radius R). These expressions are given in a spherical coordinate system.

u_r(r,\theta)=\frac 2 3 \left(\frac{R^3}{r^3} -1\right)B_1P_1(\cos\theta)+\sum_{n=2}^{\infty}\left(\frac{R^{n+2}}{r^{n+2}}-\frac{R^n}{r^n}\right)B_nP_n(\cos\theta)\;,


u_{\theta}(r,\theta)=\frac 2 3 \left(\frac{R^3}{2r^3}+1\right)B_1V_1(\cos\theta)+\sum_{n=2}^{\infty}\frac 1 2\left(n\frac{R^{n+2}}{r^{n+2}}+(2-n)\frac{R^n}{r^n}\right)B_nV_n(\cos\theta)\;.

Here B_n are constant coefficients, P_n(\cos\theta) are Legendre polynomials, and V_n(\cos\theta)=\frac{-2}{n(n+1)}\partial_{\theta}P_n(\cos\theta).

One finds P_1(\cos\theta)=\cos\theta, P_2(\cos\theta)=\tfrac 1 2 (3\cos^2\theta-1), \dots, V_1(\cos\theta)=\sin\theta, V_2(\cos\theta)= \tfrac{1}{2} \sin 2\theta, \dots.

The expressions above are in the frame of the moving particle. At the interface one finds u_{\theta}(R,\theta)=\sum_{n=1}^{\infty} B_nV_n and u_r(R,\theta)=0.

style="float: left; border: 1px solid #BBB; margin: .46em 0 0 .2em;"
File:Shaker pusher.pngFile:Pusher squirmer, lab frame.pngFile:Neutral squirmer, lab frame.pngFile:Puller squirmer, lab frame.pngFile:Shaker puller.pngFile:Passive particle, lab frame.png
File:Shaker pusher.pngFile:Pusher squirmer, swimmer frame.pngFile:Neutral squirmer, swimmer frame.pngFile:Puller squirmer, swimmer frame.pngFile:Shaker puller.pngFile:Passive particle, particle frame.png
colspan="6" style="text-align: center;" | Velocity field of squirmer and passive particle (top row: lab frame, bottom row: swimmer frame, \beta = B_2/|B_1| ).

{{clear}}

Swimming speed and lab frame

By using the Lorentz Reciprocal Theorem, one finds the velocity vector of the particle \mathbf{U}=-\tfrac{1}{2} \int \mathbf{u}(R,\theta)\sin\theta\mathrm{d}\theta=\tfrac 2 3 B_1 \mathbf{e}_z. The flow in a fixed lab frame is given by \mathbf{u}^L=\mathbf{u}+\mathbf{U}:

u_r^L(r,\theta)=\frac{R^3}{r^3}UP_1(\cos\theta)+\sum_{n=2}^{\infty}\left(\frac{R^{n+2}}{r^{n+2}}-\frac{R^n}{r^n}\right)B_nP_n(\cos\theta)\;,


u_{\theta}^L(r,\theta)=\frac{R^3}{2r^3}UV_1(\cos\theta)+\sum_{n=2}^{\infty}\frac 1 2\left(n\frac{R^{n+2}}{r^{n+2}}+(2-n)\frac{R^n}{r^n}\right)B_nV_n(\cos\theta)\;.

with swimming speed U=|\mathbf{U}|. Note, that \lim_{r\rightarrow\infty}\mathbf{u}^L=0 and u^L_r(R,\theta)\neq 0.

Structure of the flow and squirmer parameter

The series above are often truncated at n=2 in the study of far field flow, r\gg R. Within that approximation, u_{\theta}(R,\theta)=B_1\sin\theta+\tfrac 1 2 B_2 \sin 2 \theta, with squirmer parameter \beta=B_2/|B_1|. The first mode n=1 characterizes a hydrodynamic source dipole with decay \propto 1/r^3 (and with that the swimming speed U). The second mode n=2 corresponds to a hydrodynamic stresslet or force dipole with decay \propto 1/r^2.{{cite book|title=Low Reynolds number hydrodynamics|last1=Happel|first1=John|last2=Brenner|first2=Howard|series=Mechanics of fluids and transport processes |year=1981|volume=1 |issn=0921-3805|doi=10.1007/978-94-009-8352-6|isbn=978-90-247-2877-0 }} Thus, \beta gives the ratio of both contributions and the direction of the force dipole. \beta is used to categorize microswimmers into pushers, pullers and neutral swimmers.{{cite journal|last1=Downton|first1=Matthew T|last2=Stark|first2=Holger|title=Simulation of a model microswimmer|journal=Journal of Physics: Condensed Matter|volume=21|issue=20|year=2009|pages=204101|issn=0953-8984|doi=10.1088/0953-8984/21/20/204101|pmid=21825510 |bibcode=2009JPCM...21t4101D|s2cid=35850530 }}

class="wikitable"
Swimmer Typepusherneutral swimmerpullershakerpassive particle
Squirmer Parameter\beta<0\beta=0\beta>0\beta=\pm\infty
Decay of Velocity Far Field\mathbf{u}\propto 1/r^2\mathbf{u}\propto 1/r^3\mathbf{u}\propto 1/r^2\mathbf{u}\propto 1/r^2\mathbf{u}\propto 1/r
Biological ExampleE.ColiParameciumChlamydomonas reinhardtii

The above figures show the velocity field in the lab frame and in the particle-fixed frame. The hydrodynamic dipole and quadrupole fields of the squirmer model result from surface stresses, due to beating cilia on bacteria, or chemical reactions or thermal non-equilibrium on Janus particles. The squirmer is force-free. On the contrary, the velocity field of the passive particle results from an external force, its far-field corresponds to a "stokeslet" or hydrodynamic monopole. A force-free passive particle doesn't move and doesn't create any flow field.

See also

References