stability postulate

{{more citations needed|date=February 2023}}

In probability theory, to obtain a nondegenerate limiting distribution for extremes of samples, it is necessary to "reduce" the actual greatest value by applying a linear transformation with coefficients that depend on the sample size.

If \ X_1,\ X_2,\ \dots,\ X_n\ are independent random variables with common probability density function \ \mathbb{P}\left( X_j = x \right) \equiv f_X(x)\ ,

then the cumulative distribution function \ F_{Y_n}\ for \ Y_n \equiv \max\{\ X_1,\ \ldots,\ X_n\ \}\ is given by the simple relation

: F_{Y_n}(y) = \left[\ F_X(y)\ \right]^n ~.

If there is a limiting distribution for the distribution of interest, the stability postulate states that the limiting distribution must be for some sequence of transformed or "reduced" values, such as \ \left(\ a_n\ Y_n + b_n\ \right)\ , where \ a_n,\ b_n\ may depend on {{mvar|n}} but not on {{mvar|x}}.

This equation was obtained by Maurice René Fréchet and also by Ronald Fisher.

Only three possible distributions

To distinguish the limiting cumulative distribution function from the "reduced" greatest value from \ F(x)\ , we will denote it by \ G(y) ~. It follows that \ G(y)\ must satisfy the functional equation

: \ \left[\ G\!\left( y \right)\ \right]^n = G\!\left(\ a_n\ y + b_n\ \right) ~.

Boris Vladimirovich Gnedenko has shown there are no other distributions satisfying the stability postulate other than the following three:{{cite journal |last=Gnedenko |first=B. |date=1943 |title=Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire |journal=Annals of Mathematics |volume=44 |issue=3 |pages=423–453 |doi=10.2307/1968974}}

  • Gumbel distribution for the minimum stability postulate
  • If \ X_i = \textrm{Gumbel}\left(\ \mu,\ \beta \right)\ and \ Y \equiv \min\{\ X_1,\ \ldots,\ X_n\ \}\ then \ Y \sim a_n\ X + b_n\ ,
    where \ a_n = 1\ and \ b_n = \beta\ \log n\ ;
  • In other words, \ Y \sim \textsf{Gumbel}\left(\ \mu - \beta\ \log n\ ,\ \beta\ \right) ~.
  • Weibull distribution (extreme value) for the maximum stability postulate
  • If \ X_i = \textsf{Weibull}\left(\ \mu,\ \sigma\ \right)\ and \ Y \equiv \max\{\,X_1,\ldots,X_n\,\}\ then \ Y \sim a_n\ X + b_n\ ,
    where \ a_n = 1\ and \ b_n = \sigma\ \log\!\left( \tfrac{1}{n} \right)\ ;
  • In other words, \ Y \sim \textsf{Weibull}\left(\ \mu - \sigma \log\!\left(\tfrac{1}{n}\ \right)\ ,\ \sigma\ \right) ~.
  • Fréchet distribution for the maximum stability postulate
  • If \ X_i=\textsf{Frechet}\left(\ \alpha,\ s,\ m\ \right)\ and \ Y \equiv \max\{\ X_1,\ \ldots,\ X_n\ \}\ then \ Y \sim a_n\ X + b_n\ ,
    where \ a_n = n^{-\tfrac{1}{\alpha}}\ and \ b_n = m \left( 1 - n^{-\tfrac{1}{\alpha}} \right)\ ;
  • In other words, \ Y \sim \textsf{Frechet}\left(\ \alpha,n^{\tfrac{1}{\alpha}} s\ ,\ m\ \right) ~.

References

{{reflist|25em}}

Category:Stability (probability)

Category:Extreme value data

{{Statistics-stub}}

{{Probability-stub}}