stericated 5-cubes

class=wikitable style="float:right; margin-left:8px; width:480px"
align=center valign=top

|160px
5-cube
{{CDD|node_1|4|node|3|node|3|node|3|node}}

|160px
Stericated 5-cube
{{CDD|node_1|4|node|3|node|3|node|3|node_1}}

|160px
Steritruncated 5-cube
{{CDD|node_1|4|node_1|3|node|3|node|3|node_1}}

align=center valign=top

|160px
Stericantellated 5-cube
{{CDD|node_1|4|node|3|node_1|3|node|3|node_1}}

|160px
Steritruncated 5-orthoplex
{{CDD|node_1|4|node|3|node|3|node_1|3|node_1}}

|160px
Stericantitruncated 5-cube
{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1}}

align=center valign=top

|160px
Steriruncitruncated 5-cube
{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1}}

|160px
Stericantitruncated 5-orthoplex
{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1}}

|160px
Omnitruncated 5-cube
{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1}}

colspan=3|Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a stericated 5-cube is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-cube.

There are eight degrees of sterication for the 5-cube, including permutations of runcination, cantellation, and truncation. The simple stericated 5-cube is also called an expanded 5-cube, with the first and last nodes ringed, for being constructible by an expansion operation applied to the regular 5-cube. The highest form, the sterirunci{{wbr}}cantitruncated{{wbr}} 5-cube, is more simply called an omnitruncated 5-cube with all of the nodes ringed.

{{clear}}

Stericated 5-cube

class="wikitable" style="float:right; margin-left:8px; width:250px"
bgcolor=#e7dcc3 align=center colspan=3|Stericated 5-cube
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| 2r2r{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|4|node3|node|3|node|3|node_1}}
{{CDD|node|split1|nodes|3a4b|nodes_11}}
bgcolor=#e7dcc3|4-faces

|242

bgcolor=#e7dcc3|Cells

|800

bgcolor=#e7dcc3|Faces

|1040

bgcolor=#e7dcc3|Edges

|640

bgcolor=#e7dcc3|Vertices

|160

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names =

  • Stericated penteract / Stericated 5-orthoplex / Stericated pentacross
  • Expanded penteract / Expanded 5-orthoplex / Expanded pentacross
  • Small cellated penteractitriacontaditeron (Acronym: scant) (Jonathan Bowers)Klitzing, (x3o3o3o4x - scant)

= Coordinates =

The Cartesian coordinates of the vertices of a stericated 5-cube having edge length 2 are all permutations of:

:\left(\pm1,\ \pm1,\ \pm1,\ \pm1,\ \pm(1+\sqrt{2})\right)

= Images =

The stericated 5-cube is constructed by a sterication operation applied to the 5-cube.

= Dissections =

The stericated 5-cube can be dissected into two tesseractic cupolae and a runcinated tesseract between them. This dissection can be seen as analogous to the 4D runcinated tesseract being dissected into two cubic cupolae and a central rhombicuboctahedral prism between them, and also the 3D rhombicuboctahedron being dissected into two square cupolae with a central octagonal prism between them.{{5-cube Coxeter plane graphs|t04|150}}

Steritruncated 5-cube

class="wikitable" style="float:right; margin-left:8px; width:250px"

!bgcolor=#e7dcc3 colspan=2|Steritruncated 5-cube

bgcolor=#e7dcc3|Typeuniform 5-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,4{4,3,3,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node_1|4|node_1|3|node|3|node|3|node_1}}
bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells1600
bgcolor=#e7dcc3|Faces2960
bgcolor=#e7dcc3|Edges2240
bgcolor=#e7dcc3|Vertices640
bgcolor=#e7dcc3|Vertex figure80px
bgcolor=#e7dcc3|Coxeter groupsB5, [3,3,3,4]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Steritruncated penteract
  • Celliprismated triacontaditeron (Acronym: capt) (Jonathan Bowers)Klitzing, (x3o3o3x4x - capt)

= Construction and coordinates =

The Cartesian coordinates of the vertices of a steritruncated 5-cube having edge length 2 are all permutations of:

:\left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+2\sqrt{2})\right)

= Images =

{{5-cube Coxeter plane graphs|t014|150}}

Stericantellated 5-cube

class="wikitable" style="float:right; margin-left:8px; width:250px"
bgcolor=#e7dcc3 align=center colspan=3|Stericantellated 5-cube
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| t0,2,4{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|4|node|3|node_1|3|node|3|node_1}}
{{CDD|node_1|split1|nodes|3a4b|nodes_11}}
bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells2080
bgcolor=#e7dcc3|Faces4720
bgcolor=#e7dcc3|Edges3840
bgcolor=#e7dcc3|Vertices960
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names =

  • Stericantellated penteract
  • Stericantellated 5-orthoplex, stericantellated pentacross
  • Cellirhombated penteractitriacontiditeron (Acronym: carnit) (Jonathan Bowers)Klitzing, (x3o3x3o4x - carnit)

= Coordinates =

The Cartesian coordinates of the vertices of a stericantellated 5-cube having edge length 2 are all permutations of:

:\left(\pm1,\ \pm1,\ \pm1,\ \pm(1+\sqrt{2}),\ \pm(1+2\sqrt{2})\right)

= Images =

{{5-cube Coxeter plane graphs|t024|150}}

Stericantitruncated 5-cube

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Stericantitruncated 5-cube
bgcolor=#e7dcc3|Type

|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|t0,1,2,4{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1}}

bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells2400
bgcolor=#e7dcc3|Faces6000
bgcolor=#e7dcc3|Edges5760
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|convex, isogonal

= Alternate names =

  • Stericantitruncated penteract
  • Steriruncicantellated triacontiditeron / Biruncicantitruncated pentacross
  • Celligreatorhombated penteract (cogrin) (Jonathan Bowers)Klitzing, (x3o3x3x4x - cogrin)

= Coordinates =

The Cartesian coordinates of the vertices of a stericantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:

:\left(1,\ 1+\sqrt{2},\ 1+2\sqrt{2},\ 1+2\sqrt{2},\ 1+3\sqrt{2}\right)

= Images =

{{5-cube Coxeter plane graphs|t013|150}}

Steriruncitruncated 5-cube

class="wikitable" astyle="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Steriruncitruncated 5-cube
bgcolor=#e7dcc3|Type

|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|2t2r{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1}}
{{CDD|node|split1|nodes_11|3a4b|nodes_11}}

bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells2160
bgcolor=#e7dcc3|Faces5760
bgcolor=#e7dcc3|Edges5760
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|convex, isogonal

= Alternate names =

  • Steriruncitruncated penteract / Steriruncitruncated 5-orthoplex / Steriruncitruncated pentacross
  • Celliprismatotruncated penteractitriacontiditeron (captint) (Jonathan Bowers)Klitzing, (x3x3o3x4x - captint)

= Coordinates =

The Cartesian coordinates of the vertices of a steriruncitruncated penteract having an edge length of 2 are given by all permutations of coordinates and sign of:

:\left(1,\ 1+\sqrt{2},\ 1+1\sqrt{2},\ 1+2\sqrt{2},\ 1+3\sqrt{2}\right)

= Images =

{{5-cube Coxeter plane graphs|t0134|150}}

Steritruncated 5-orthoplex

class="wikitable" style="float:right; margin-left:8px; width:250px"

!bgcolor=#e7dcc3 colspan=2|Steritruncated 5-orthoplex

bgcolor=#e7dcc3|Typeuniform 5-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,4{3,3,3,4}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node_1|4|node|3|node|3|node_1|3|node_1}}
bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells1520
bgcolor=#e7dcc3|Faces2880
bgcolor=#e7dcc3|Edges2240
bgcolor=#e7dcc3|Vertices640
bgcolor=#e7dcc3|Vertex figure80px
bgcolor=#e7dcc3|Coxeter groupB5, [3,3,3,4]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Steritruncated pentacross
  • Celliprismated penteract (Acronym: cappin) (Jonathan Bowers)Klitzing, (x3x3o3o4x - cappin)

= Coordinates =

Cartesian coordinates for the vertices of a steritruncated 5-orthoplex, centered at the origin, are all permutations of

:\left(\pm1,\ \pm1,\ \pm1,\ \pm1,\ \pm(1+\sqrt{2})\right)

= Images =

{{5-cube Coxeter plane graphs|t034|150}}

Stericantitruncated 5-orthoplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Stericantitruncated 5-orthoplex
bgcolor=#e7dcc3|Type

|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|t0,2,3,4{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1}}

bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells2320
bgcolor=#e7dcc3|Faces5920
bgcolor=#e7dcc3|Edges5760
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|convex, isogonal

= Alternate names =

  • Stericantitruncated pentacross
  • Celligreatorhombated triacontaditeron (cogart) (Jonathan Bowers)Klitzing, (x3x3x3o4x - cogart)

= Coordinates =

The Cartesian coordinates of the vertices of a stericantitruncated 5-orthoplex having an edge length of 2 are given by all permutations of coordinates and sign of:

:\left(1,\ 1,\ 1+\sqrt{2},\ 1+2\sqrt{2},\ 1+3\sqrt{2}\right)

= Images =

{{5-cube Coxeter plane graphs|t0234|150}}

Omnitruncated 5-cube

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Omnitruncated 5-cube
bgcolor=#e7dcc3|Type

|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|tr2r{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1}}
{{CDD|node_1|split1|nodes_11|3a4b|nodes_11}}

bgcolor=#e7dcc3|4-faces242
bgcolor=#e7dcc3|Cells2640
bgcolor=#e7dcc3|Faces8160
bgcolor=#e7dcc3|Edges9600
bgcolor=#e7dcc3|Vertices3840
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
irr. {3,3,3}

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|convex, isogonal

= Alternate names =

  • Steriruncicantitruncated 5-cube (Full expansion of omnitruncation for 5-polytopes by Johnson)
  • Omnitruncated penteract
  • Omnitruncated triacontiditeron / omnitruncated pentacross
  • Great cellated penteractitriacontiditeron (Jonathan Bowers)Klitzing, (x3x3x3x4x - gacnet)

= Coordinates =

The Cartesian coordinates of the vertices of an omnitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:

:\left(1,\ 1+\sqrt{2},\ 1+2\sqrt{2},\ 1+3\sqrt{2},\ 1+4\sqrt{2}\right)

= Images =

{{5-cube Coxeter plane graphs|t01234|150}}

= Full snub 5-cube =

The full snub 5-cube or omnisnub 5-cube, defined as an alternation of the omnitruncated 5-cube is not uniform, but it can be given Coxeter diagram {{CDD|node_h|4|node_h|3|node_h|3|node_h|3|node_h}} and symmetry [4,3,3,3]+, and constructed from 10 snub tesseracts, 32 snub 5-cells, 40 snub cubic antiprisms, 80 snub tetrahedral antiprisms, 80 3-4 duoantiprisms, and 1920 irregular 5-cells filling the gaps at the deleted vertices.

Related polytopes

This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.

{{Penteract family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3o3o4x - scan, x3o3o3x4x - capt, x3o3x3o4x - carnit, x3o3x3x4x - cogrin, x3x3o3x4x - captint, x3x3x3x4x - gacnet, x3x3x3o4x - cogart