stericated 5-cubes
class=wikitable style="float:right; margin-left:8px; width:480px" |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
colspan=3|Orthogonal projections in B5 Coxeter plane |
---|
In five-dimensional geometry, a stericated 5-cube is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-cube.
There are eight degrees of sterication for the 5-cube, including permutations of runcination, cantellation, and truncation. The simple stericated 5-cube is also called an expanded 5-cube, with the first and last nodes ringed, for being constructible by an expansion operation applied to the regular 5-cube. The highest form, the sterirunci{{wbr}}cantitruncated{{wbr}} 5-cube, is more simply called an omnitruncated 5-cube with all of the nodes ringed.
{{clear}}
Stericated 5-cube
class="wikitable" style="float:right; margin-left:8px; width:250px" | ||
bgcolor=#e7dcc3 align=center colspan=3|Stericated 5-cube | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| 2r2r{4,3,3,3} | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|4|node | 3|node|3|node|3|node_1}} {{CDD|node|split1|nodes|3a4b|nodes_11}} |
bgcolor=#e7dcc3|4-faces
|242 | ||
bgcolor=#e7dcc3|Cells
|800 | ||
bgcolor=#e7dcc3|Faces
|1040 | ||
bgcolor=#e7dcc3|Edges
|640 | ||
bgcolor=#e7dcc3|Vertices
|160 | ||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | ||
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | ||
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names =
- Stericated penteract / Stericated 5-orthoplex / Stericated pentacross
- Expanded penteract / Expanded 5-orthoplex / Expanded pentacross
- Small cellated penteractitriacontaditeron (Acronym: scant) (Jonathan Bowers)Klitzing, (x3o3o3o4x - scant)
= Coordinates =
The Cartesian coordinates of the vertices of a stericated 5-cube having edge length 2 are all permutations of:
:
= Images =
The stericated 5-cube is constructed by a sterication operation applied to the 5-cube.
= Dissections =
The stericated 5-cube can be dissected into two tesseractic cupolae and a runcinated tesseract between them. This dissection can be seen as analogous to the 4D runcinated tesseract being dissected into two cubic cupolae and a central rhombicuboctahedral prism between them, and also the 3D rhombicuboctahedron being dissected into two square cupolae with a central octagonal prism between them.{{5-cube Coxeter plane graphs|t04|150}}
Steritruncated 5-cube
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steritruncated 5-cube | |
bgcolor=#e7dcc3|Type | uniform 5-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,4{4,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 1600 |
bgcolor=#e7dcc3|Faces | 2960 |
bgcolor=#e7dcc3|Edges | 2240 |
bgcolor=#e7dcc3|Vertices | 640 |
bgcolor=#e7dcc3|Vertex figure | 80px |
bgcolor=#e7dcc3|Coxeter groups | B5, [3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Steritruncated penteract
- Celliprismated triacontaditeron (Acronym: capt) (Jonathan Bowers)Klitzing, (x3o3o3x4x - capt)
= Construction and coordinates =
The Cartesian coordinates of the vertices of a steritruncated 5-cube having edge length 2 are all permutations of:
:
= Images =
{{5-cube Coxeter plane graphs|t014|150}}
Stericantellated 5-cube
class="wikitable" style="float:right; margin-left:8px; width:250px" | |
bgcolor=#e7dcc3 align=center colspan=3|Stericantellated 5-cube | |
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | |
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| t0,2,4{4,3,3,3} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|4|node|3|node_1|3|node|3|node_1}} {{CDD|node_1|split1|nodes|3a4b|nodes_11}} |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 2080 |
bgcolor=#e7dcc3|Faces | 4720 |
bgcolor=#e7dcc3|Edges | 3840 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names =
- Stericantellated penteract
- Stericantellated 5-orthoplex, stericantellated pentacross
- Cellirhombated penteractitriacontiditeron (Acronym: carnit) (Jonathan Bowers)Klitzing, (x3o3x3o4x - carnit)
= Coordinates =
The Cartesian coordinates of the vertices of a stericantellated 5-cube having edge length 2 are all permutations of:
:
= Images =
{{5-cube Coxeter plane graphs|t024|150}}
Stericantitruncated 5-cube
class="wikitable" style="float:right; margin-left:8px; width:280px" | |
bgcolor=#e7dcc3 align=center colspan=3|Stericantitruncated 5-cube | |
bgcolor=#e7dcc3|Type | |
bgcolor=#e7dcc3|Schläfli symbol
|t0,1,2,4{4,3,3,3} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram |{{CDD|node_1|4|node_1|3|node_1|3|node|3|node_1}} | |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 2400 |
bgcolor=#e7dcc3|Faces | 6000 |
bgcolor=#e7dcc3|Edges | 5760 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Stericantitruncated penteract
- Steriruncicantellated triacontiditeron / Biruncicantitruncated pentacross
- Celligreatorhombated penteract (cogrin) (Jonathan Bowers)Klitzing, (x3o3x3x4x - cogrin)
= Coordinates =
The Cartesian coordinates of the vertices of a stericantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:
:
= Images =
{{5-cube Coxeter plane graphs|t013|150}}
Steriruncitruncated 5-cube
class="wikitable" astyle="float:right; margin-left:8px; width:280px" | |
bgcolor=#e7dcc3 align=center colspan=3|Steriruncitruncated 5-cube | |
bgcolor=#e7dcc3|Type | |
bgcolor=#e7dcc3|Schläfli symbol
|2t2r{4,3,3,3} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram |{{CDD|node_1|4|node_1|3|node|3|node_1|3|node_1}} | |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 2160 |
bgcolor=#e7dcc3|Faces | 5760 |
bgcolor=#e7dcc3|Edges | 5760 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Steriruncitruncated penteract / Steriruncitruncated 5-orthoplex / Steriruncitruncated pentacross
- Celliprismatotruncated penteractitriacontiditeron (captint) (Jonathan Bowers)Klitzing, (x3x3o3x4x - captint)
= Coordinates =
The Cartesian coordinates of the vertices of a steriruncitruncated penteract having an edge length of 2 are given by all permutations of coordinates and sign of:
:
= Images =
{{5-cube Coxeter plane graphs|t0134|150}}
Steritruncated 5-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steritruncated 5-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 5-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,4{3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node|3|node_1|3|node_1}} |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 1520 |
bgcolor=#e7dcc3|Faces | 2880 |
bgcolor=#e7dcc3|Edges | 2240 |
bgcolor=#e7dcc3|Vertices | 640 |
bgcolor=#e7dcc3|Vertex figure | 80px |
bgcolor=#e7dcc3|Coxeter group | B5, [3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Steritruncated pentacross
- Celliprismated penteract (Acronym: cappin) (Jonathan Bowers)Klitzing, (x3x3o3o4x - cappin)
= Coordinates =
Cartesian coordinates for the vertices of a steritruncated 5-orthoplex, centered at the origin, are all permutations of
:
= Images =
{{5-cube Coxeter plane graphs|t034|150}}
Stericantitruncated 5-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:280px" | |
bgcolor=#e7dcc3 align=center colspan=3|Stericantitruncated 5-orthoplex | |
bgcolor=#e7dcc3|Type | |
bgcolor=#e7dcc3|Schläfli symbol
|t0,2,3,4{4,3,3,3} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram |{{CDD|node_1|4|node|3|node_1|3|node_1|3|node_1}} | |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 2320 |
bgcolor=#e7dcc3|Faces | 5920 |
bgcolor=#e7dcc3|Edges | 5760 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Stericantitruncated pentacross
- Celligreatorhombated triacontaditeron (cogart) (Jonathan Bowers)Klitzing, (x3x3x3o4x - cogart)
= Coordinates =
The Cartesian coordinates of the vertices of a stericantitruncated 5-orthoplex having an edge length of 2 are given by all permutations of coordinates and sign of:
:
= Images =
{{5-cube Coxeter plane graphs|t0234|150}}
Omnitruncated 5-cube
class="wikitable" style="float:right; margin-left:8px; width:280px" | |
bgcolor=#e7dcc3 align=center colspan=3|Omnitruncated 5-cube | |
bgcolor=#e7dcc3|Type | |
bgcolor=#e7dcc3|Schläfli symbol
|tr2r{4,3,3,3} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram |{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node_1}} | |
bgcolor=#e7dcc3|4-faces | 242 |
bgcolor=#e7dcc3|Cells | 2640 |
bgcolor=#e7dcc3|Faces | 8160 |
bgcolor=#e7dcc3|Edges | 9600 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Steriruncicantitruncated 5-cube (Full expansion of omnitruncation for 5-polytopes by Johnson)
- Omnitruncated penteract
- Omnitruncated triacontiditeron / omnitruncated pentacross
- Great cellated penteractitriacontiditeron (Jonathan Bowers)Klitzing, (x3x3x3x4x - gacnet)
= Coordinates =
The Cartesian coordinates of the vertices of an omnitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:
:
= Images =
{{5-cube Coxeter plane graphs|t01234|150}}
= Full snub 5-cube =
The full snub 5-cube or omnisnub 5-cube, defined as an alternation of the omnitruncated 5-cube is not uniform, but it can be given Coxeter diagram {{CDD|node_h|4|node_h|3|node_h|3|node_h|3|node_h}} and symmetry [4,3,3,3]+, and constructed from 10 snub tesseracts, 32 snub 5-cells, 40 snub cubic antiprisms, 80 snub tetrahedral antiprisms, 80 3-4 duoantiprisms, and 1920 irregular 5-cells filling the gaps at the deleted vertices.
Related polytopes
This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.
{{Penteract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3o3o4x - scan, x3o3o3x4x - capt, x3o3x3o4x - carnit, x3o3x3x4x - cogrin, x3x3o3x4x - captint, x3x3x3x4x - gacnet, x3x3x3o4x - cogart
External links
- {{PolyCell | urlname = glossary.html#simplex| title = Glossary for hyperspace}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}