stress intensity factor#Relationship to energy release rate and J-integral

{{Short description|Quantity in fracture mechanics; predicts stress intensity near a crack's tip}}

File:cracktipcoords.svg

In fracture mechanics, the stress intensity factor ({{mvar|K}}) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses.{{cite book

|last=Anderson |first=T. L.

|year=2005

|title=Fracture mechanics: fundamentals and applications

|publisher=CRC Press}} It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle materials, and is a critical technique in the discipline of damage tolerance. The concept can also be applied to materials that exhibit small-scale yielding at a crack tip.

The magnitude of {{mvar|K}} depends on specimen geometry, the size and location of the crack or notch, and the magnitude and the distribution of loads on the material. It can be written as:{{Cite book|last=Soboyejo|first=W. O.|url=http://worldcat.org/oclc/300921090|title=Mechanical properties of engineered materials|date=2003|publisher=Marcel Dekker|isbn=0-8247-8900-8|chapter=11.6.2 Crack Driving Force and Concept of Similitude|oclc=300921090}}{{Cite book|last=Janssen|first=M. (Michael)|url=https://www.worldcat.org/oclc/57491375|title=Fracture mechanics|date=2004|publisher=Spon Press|others=Zuidema, J. (Jan), Wanhill, R. J. H.|isbn=0-203-59686-2|edition=2nd|location=London|pages=41|oclc=57491375}}

:K = \sigma \sqrt{\pi a} \, f(a/W)

where f(a/W) is a specimen geometry dependent function of the crack length, {{mvar|a}}, and the specimen width, {{mvar|W}}, and {{mvar|σ}} is the applied stress.

Linear elastic theory predicts that the stress distribution (\sigma_{ij}) near the crack tip, in polar coordinates (r,\theta) with origin at the crack tip, has the form {{cite book

|title = The Stress Analysis of Cracks Handbook

|author1 = Hiroshi Tada

|author-link = Hiroshi Tada (engineer)

|author2 = P. C. Paris

|author2-link = Paul C. Paris

|author3 = George R. Irwin

|author3-link = George Rankine Irwin

|publisher = American Society of Mechanical Engineers

|edition = 3rd

|date = February 2000}}

:

\sigma_{ij}(r, \theta) = \frac {K} {\sqrt{2 \pi r}}\,f_{ij} ( \theta) + \,\,\rm{higher\, order\, terms}

where {{mvar|K}} is the stress intensity factor (with units of stress × length1/2) and f_{ij} is a dimensionless quantity that varies with the load and geometry. Theoretically, as {{mvar|r}} goes to 0, the stress \sigma_{ij} goes to \infty resulting in a stress singularity.{{cite journal|last1= Liu | first1= M. | display-authors=etal |title= An improved semi-analytical solution for stress at round-tip notches | journal= Engineering Fracture Mechanics | year=2015 | volume=149| pages=134–143 | doi= 10.1016/j.engfracmech.2015.10.004 | s2cid= 51902898 |url= http://drgan.org/wp-content/uploads/2014/07/032_EFM_2015.pdf }} Practically however, this relation breaks down very close to the tip (small {{mvar|r}}) because plasticity typically occurs at stresses exceeding the material's yield strength and the linear elastic solution is no longer applicable. Nonetheless, if the crack-tip plastic zone is small in comparison to the crack length, the asymptotic stress distribution near the crack tip is still applicable.

Stress intensity factors for various modes

Image:Fracture modes v2.svg

In 1957, G. Irwin found that the stresses around a crack could be expressed in terms of a scaling factor called the stress intensity factor. He found that a crack subjected to any arbitrary loading could be resolved into three types of linearly independent cracking modes.{{cite book |last1=Suresh |first1=S. |year=2004 |title=Fatigue of Materials |publisher=Cambridge University Press |isbn=978-0-521-57046-6}} These load types are categorized as Mode I, II, or III as shown in the figure. Mode I is an opening (tensile) mode where the crack surfaces move directly apart. Mode II is a sliding (in-plane shear) mode where the crack surfaces slide over one another in a direction perpendicular to the leading edge of the crack. Mode III is a tearing (antiplane shear) mode where the crack surfaces move relative to one another and parallel to the leading edge of the crack. Mode I is the most common load type encountered in engineering design.

Different subscripts are used to designate the stress intensity factor for the three different modes. The stress intensity factor for mode I is designated K_{\rm I} and applied to the crack opening mode. The mode II stress intensity factor, K_{\rm II}, applies to the crack sliding mode and the mode III stress intensity factor, K_{\rm III}, applies to the tearing mode. These factors are formally defined as:

:

\begin{align}

K_{\rm I} & = \lim_{r\rightarrow 0} \sqrt{2\pi r}\,\sigma_{yy}(r,0) \\

K_{\rm II} & = \lim_{r\rightarrow 0} \sqrt{2\pi r}\,\sigma_{yx}(r,0) \\

K_{\rm III} & = \lim_{r\rightarrow 0} \sqrt{2\pi r}\,\sigma_{yz}(r,0) \,.

\end{align}

class="toccolours collapsible collapsed" style="text-align:left"

!Equations for stress and displacement fields

The mode I stress field expressed in terms of K_{\rm I} is

:

\left\{

\begin{align}

\sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{align} \right\} = \frac{K_{\rm I}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left\{

\begin{align}

1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \\

1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \\

\sin\frac{\theta}{2}\cos\frac{3\theta}{2}

\end{align} \right\}

,

and

:

\left\{

\begin{align}

\sigma_{rr} \\ \sigma_{\theta \theta} \\ \sigma_{r \theta} \end{align} \right\} = \frac{K_{\rm I}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left\{

\begin{align}

1 + \sin^2\frac{\theta}{2} \\

\cos^2\frac{\theta}{2} \\

\sin\frac{\theta}{2}\cos\frac{\theta}{2}

\end{align} \right\}

.

:\sigma_{zz} = \nu_1 (\sigma_{xx} + \sigma_{yy}) = \nu_1 (\sigma_{rr} + \sigma_{\theta\theta}),

:\sigma_{xz} = \sigma_{yz} = \sigma_{rz} = \sigma_{\theta z} = 0.

The displacements are

:

\left\{ \begin{align} u_x \\ u_y \end{align} \right\} = \frac{K_{\rm I}}{2E} \sqrt{\frac{r}{2\pi}}

\left\{

\begin{align}

(1+ \nu) \left[ (2\kappa - 1) \cos\frac{\theta}{2} - \cos\frac{3\theta}{2} \right] \\

(1+ \nu) \left[ (2\kappa + 1) \sin\frac{\theta}{2} - \sin\frac{3\theta}{2} \right]

\end{align}

\right\}

:

\left\{ \begin{align} u_r \\ u_\theta \end{align} \right\} = \frac{K_{\rm I}}{2E} \sqrt{\frac{r}{2\pi}}

\left\{

\begin{align}

(1+ \nu) \left[ (2\kappa - 1) \cos\frac{\theta}{2} - \cos\frac{3\theta}{2} \right] \\

(1+ \nu) \left[ -(2\kappa - 1) \sin\frac{\theta}{2} + \sin\frac{3\theta}{2} \right]

\end{align}

\right\}

:

u_z = -\left(\frac{\nu_2 z}{E}\right) (\sigma_{xx} + \sigma_{yy}) = -\left(\frac{\nu_2 z}{E}\right) (\sigma_{rr} + \sigma_{\theta\theta})

Where, for plane stress conditions

: \kappa = \frac{(3 - \nu) }{(1 + \nu)}, \nu_1 = 0, \nu_2=\nu ,

and for plane strain

:\kappa = (3 - 4 \nu), \nu_1 = \nu, \nu_2 = 0 .

For mode II

:

\left\{

\begin{align}

\sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy}

\end{align} \right\} = \frac{K_{\rm II}}{\sqrt{2\pi r}} \left\{

\begin{align}

- \sin\frac{\theta}{2}(2+\cos\frac{\theta}{2}\cos\frac{3\theta}{2} ) \\

\sin\frac{\theta}{2}\cos\frac{\theta}{2} \sin\frac{3\theta}{2} \\

\cos\frac{\theta}{2} (1-\sin\frac{\theta}{2}\sin\frac{3\theta}{2})

\end{align} \right\}

and

:

\left\{

\begin{align}

\sigma_{rr} \\ \sigma_{\theta\theta} \\ \sigma_{r\theta}

\end{align} \right\} = \frac{K_{\rm II}}{\sqrt{2\pi r}} \left\{

\begin{align}

\sin\frac{\theta}{2}(1-3\sin^2\frac{\theta}{2}) \\

-3 \sin\frac{\theta}{2}\cos^2\frac{\theta}{2} \\

\cos\frac{\theta}{2} (1-3\sin^2\frac{\theta}{2})

\end{align} \right\}

,

: \sigma_{zz} = \nu_1(\sigma_{xx} + \sigma_{yy}) = \nu_1 (\sigma_{rr} + \sigma_{\theta\theta}),

: \sigma_{xz} = \sigma_{yz} = \sigma_{rz} = \sigma_{\theta z} = 0.

:

\left\{ \begin{align} u_x \\ u_y \end{align} \right\} = \frac{K_{\rm II}}{2E} \sqrt{\frac{r}{2\pi}}

\left\{

\begin{align}

(1+ \nu) \left[ (2\kappa + 3) \sin\frac{\theta}{2} + \sin\frac{3\theta}{2} \right] \\

-(1+ \nu) \left[ (2\kappa - 3) \cos\frac{\theta}{2} + \cos\frac{3\theta}{2} \right]

\end{align}

\right\}

:

\left\{ \begin{align} u_r \\ u_\theta \end{align} \right\} = \frac{K_{\rm II}}{2E} \sqrt{\frac{r}{2\pi}}

\left\{

\begin{align}

(1+ \nu) \left[ -(2\kappa - 1) \sin\frac{\theta}{2} + 3\sin\frac{3\theta}{2} \right] \\

(1+ \nu) \left[ -(2\kappa + 1) \cos\frac{\theta}{2} + 3\cos\frac{3\theta}{2} \right]

\end{align}

\right\}

:

u_z = -\left(\frac{\nu_2 z}{E} \right) (\sigma_{xx} + \sigma_{yy}) = -\left(\frac{\nu_2 z}{E}\right)(\sigma_{rr} + \sigma_{\theta\theta})

And finally, for mode III

:

\left\{

\begin{align}

\sigma_{xz} \\ \sigma_{yz}

\end{align} \right\} = \frac{K_{\rm III}}{\sqrt{2\pi r}} \left\{

\begin{align}

-\sin\frac{\theta}{2} \\

\cos\frac{\theta}{2}

\end{align} \right\}

:

\left\{

\begin{align}

\sigma_{rz} \\ \sigma_{\theta z}

\end{align} \right\} = \frac{K_{\rm III}}{\sqrt{2\pi r}} \left\{

\begin{align}

\sin\frac{\theta}{2} \\

\cos\frac{\theta}{2}

\end{align} \right\}

with \sigma_{xx} = \sigma_{yy} = \sigma_{rr} = \sigma_{\theta\theta} = \sigma_{zz} = \sigma_{xy} = \sigma_{r\theta} = 0.

: u_z = \frac{2K_{\rm III}}{E} \sqrt{\frac{r}{2\pi}} \left\{ 2(1+\nu) \sin \frac{\theta}{2} \right\} ,

: u_x = u_y = u_r = u_\theta = 0 .

Relationship to energy release rate and J-integral

In plane stress conditions, the strain energy release rate (G) for a crack under pure mode I, or pure mode II loading is related to the stress intensity factor by:

:

G_{\rm I} = K_{\rm I}^2\left(\frac{1}{E}\right)

:

G_{\rm II} = K_{\rm II}^2\left(\frac{1}{E}\right)

where E is the Young's modulus and \nu is the Poisson's ratio of the material. The material is assumed to be an isotropic, homogeneous, and linear elastic. The crack has been assumed to extend along the direction of the initial crack

For plane strain conditions, the equivalent relation is a little more complicated:

:

G_{\rm I} = K_{\rm I}^2\left(\frac{1-\nu^2}{E}\right)\,

:

G_{\rm II} = K_{\rm II}^2\left(\frac{1-\nu^2}{E}\right)\,.

For pure mode III loading,

:

G_{\rm III} = K_{\rm III}^2\left(\frac{1}{2\mu}\right) = K_{\rm III}^2\left(\frac{1+\nu}{E}\right)

where \mu is the shear modulus. For general loading in plane strain, the linear combination holds:

:

G = G_{\rm I} + G_{\rm II} + G_{\rm III}\,.

A similar relation is obtained for plane stress by adding the contributions for the three modes.

The above relations can also be used to connect the J-integral to the stress intensity factor because

:

G = J = \int_\Gamma \left(W~dx_2 - \mathbf{t}\cdot\cfrac{\partial\mathbf{u}}{\partial x_1}~ds\right) \,.

Critical stress intensity factor

{{main|Fracture toughness}}

The stress intensity factor, K, is a parameter that amplifies the magnitude of the applied stress that includes the geometrical parameter Y (load type). Stress intensity in any mode situation is directly proportional to the applied load on the material. If a very sharp crack, or a V-notch can be made in a material, the minimum value of K_\mathrm{I} can be empirically determined, which is the critical value of stress intensity required to propagate the crack. This critical value determined for mode I loading in plane strain is referred to as the critical fracture toughness (K_\mathrm{Ic}) of the material. K_\mathrm{Ic} has units of stress times the root of a distance (e.g. MN/m3/2). The units of K_\mathrm{Ic} imply that the fracture stress of the material must be reached over some critical distance in order for K_\mathrm{Ic} to be reached and crack propagation to occur. The Mode I critical stress intensity factor, K_\mathrm{Ic}, is the most often used engineering design parameter in fracture mechanics and hence must be understood if we are to design fracture tolerant materials used in bridges, buildings, aircraft, or even bells.

Polishing cannot detect a crack. Typically, if a crack can be seen it is very close to the critical stress state predicted by the stress intensity factor{{citation needed|date=November 2012}}.

= G–criterion =

The G-criterion is a fracture criterion that relates the critical stress intensity factor (or fracture toughness) to the stress intensity factors for the three modes. This failure criterion is written as{{citation|title=Fracture mechanics applied to engineering problems-strain energy density fracture criterion |last1=Sih |first1=G. C. |last2=Macdonald |first2=B. |journal=Engineering Fracture Mechanics |volume=6 |number=2 |pages=361–386 |year=1974 |doi=10.1016/0013-7944(74)90033-2}}

:

K_{\rm c}^2 = K_{\rm I}^2 + K_{\rm II}^2 + \frac{E'}{2\mu}\,K_{\rm III}^2

where K_{\rm c} is the fracture toughness, E' = E/(1-\nu^2) for plane strain and E' = E for plane stress. The critical stress intensity factor for plane stress is often written as K_{\rm c}.

Examples

= Infinite plate: Uniform uniaxial stress =

align = "left" valign = "top"

|

The stress intensity factor for an assumed straight crack of length 2a perpendicular to the loading direction, in an infinite plane, having a uniform stress field \sigma is {{cite book |title=Compendium of stress intensity factors |last1=Rooke |first1=D. P. |last2=Cartwright |first2=D. J. |publisher=HMSO Ministry of Defence. Procurement Executive|year=1976}}

:

K_\mathrm{I}=\sigma \sqrt{\pi a}

|File:CrackInfinitePlate.svg

= Penny-shaped crack in an infinite domain =

align = "left" valign = "top"

|

The stress intensity factor at the tip of a penny-shaped crack of radius a in an infinite domain under uniaxial tension \sigma is

:

K_{\rm I} = \frac{2}{\pi}\sigma\sqrt{\pi a} \,.

|File:PennyShapedCrack.svg

= Finite plate: Uniform uniaxial stress =

align = "left" valign = "top"

|

If the crack is located centrally in a finite plate of width 2b and height 2h, an approximate relation for the stress intensity factor is

:

K_{\rm I} = \sigma \sqrt{\pi a}\left[\cfrac{1 - \frac{a}{2b} + 0.326\left(\frac{a}{b}\right)^2}{\sqrt{1 - \frac{a}{b}}}\right] \,.

If the crack is not located centrally along the width, i.e., d \ne b, the stress intensity factor at location A can be approximated by the series expansionIsida, M., 1966, Stress intensity factors for the tension of an eccentrically cracked strip, Transactions of the ASME Applied Mechanics Section, v. 88, p.94.

:

K_{\rm IA} = \sigma \sqrt{\pi a}\left[1 + \sum_{n=2}^{M} C_n\left(\frac{a}{b}\right)^n\right]

where the factors C_n can be found from fits to stress intensity curves{{rp|6}} for various values of d. A similar (but not identical) expression can be found for tip B of the crack. Alternative expressions for the stress intensity factors at A and B are {{cite book |last1=Kathiresan |first1=K. |last2=Brussat |first2=T. R. |last3=Hsu |first3=T. M. |year=1984 |title=Advanced life analysis methods. Crack Growth Analysis Methods for Attachment Lugs |publisher=Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, AFSC W-P Air Force Base, Ohio |number=AFWAL-TR-84-3080}}{{rp|175}}

:

K_{\rm IA} = \sigma\sqrt{\pi a}\,\Phi_A \,\, , K_{\rm IB} = \sigma\sqrt{\pi a}\,\Phi_B

where

:

\begin{align}

\Phi_A &:= \left[\beta + \left(\frac{1-\beta}{4}\right)\left(1 + \frac{1}{4\sqrt{\sec\alpha_A}}\right)^2\right]\sqrt{\sec\alpha_A} \\

\Phi_B &:= 1 + \left[\frac{\sqrt{\sec\alpha_{AB}} - 1}{1 + 0.21\sin\left\{8\,\tan^{-1}\left[\left(\frac{\alpha_A - \alpha_B}{\alpha_A + \alpha_B}\right)^{0.9}\right]\right\}}\right]

\end{align}

with

:

\beta := \sin\left(\frac{\pi\alpha_B}{\alpha_A+\alpha_B}\right) ~,~~ \alpha_A := \frac{\pi a}{2 d}

~,~~ \alpha_B := \frac{\pi a}{4b - 2d} ~;~~ \alpha_{AB} := \frac{4}{7}\,\alpha_A + \frac{3}{7}\,\alpha_B \,.

In the above expressions d is the distance from the center of the crack to the boundary closest to point A. Note that when d=b the above expressions do not simplify into the approximate expression for a centered crack.

|File:CrackFinitePlate.svg

= Edge crack in a plate under uniaxial stress =

align = "left" valign = "top"

|

For a plate having dimensions 2h \times b containing an unconstrained edge crack of length a, if the dimensions

of the plate are such that h/b \ge 0.5 and a/b \le 0.6, the stress intensity factor at the

crack tip under a uniaxial stress \sigma is

:

K_{\rm I} = \sigma\sqrt{\pi a}\left[1.122 - 0.231\left(\frac{a}{b}\right) + 10.55\left(\frac{a}{b}\right)^2

- 21.71\left(\frac{a}{b}\right)^3 + 30.382\left(\frac{a}{b}\right)^4\right] \,.

For the situation where h/b \ge 1 and a/b \ge 0.3, the stress intensity factor can be approximated

by

:

K_{\rm I} = \sigma\sqrt{\pi a}\left[\frac{1 + 3\frac{a}{b}}{2\sqrt{\pi\frac{a}{b}}\left(1-\frac{a}{b}\right)^{3/2}}\right] \,.

|File:CrackEdgeFinitePlate.svg

= Infinite plate: Slanted crack in a biaxial stress field =

align = "left" valign = "top"

|

For a slanted crack of length 2a in a biaxial stress field with stress \sigma in the y-direction and \alpha\sigma in the x-direction, the stress intensity factors are

:

\begin{align}

K_{\rm I} & = \sigma\sqrt{\pi a}\left(\cos^2\beta + \alpha \sin^2\beta\right) \\

K_{\rm II} & = \sigma\sqrt{\pi a}\left(1- \alpha\right)\sin\beta\cos\beta

\end{align}

where \beta is the angle made by the crack with the x-axis.

| File:CrackSlantedPlateBiaxialLoad.svg

= Crack in a plate under point in-plane force =

align = "left" valign = "top"

|

Consider a plate with dimensions 2h \times 2b containing a crack of length 2a. A point force with components F_x and F_y is applied at the point (x,y) of the plate.

For the situation where the plate is large compared to the size of the crack and the location of the force is relatively close to the crack, i.e., h \gg a, b \gg a, x \ll b, y \ll h, the plate can be considered infinite. In that case, for the stress intensity factors for F_x at crack tip B (x = a) are {{citation |last1=Sih |first1=G. C. |last2=Paris |first2=P. C. |last3=Erdogan |first3=F.|name-list-style=amp|year=1962|title=Crack-tip stress intensity factors for the plane extension and plate bending problem |journal=Journal of Applied Mechanics|volume=29|issue=2 |pages=306–312 |bibcode = 1962JAM....29..306S |doi = 10.1115/1.3640546 }}{{citation |title=On the stress distribution in plates with collinear cuts under arbitrary loads |last=Erdogan |first=F. |journal=Proceedings of the Fourth US National Congress of Applied Mechanics |volume=1 |pages=547–574 |year=1962}}

:

\begin{align}

K_{\rm I} & = \frac{F_x}{2\sqrt{\pi a}}\left(\frac{\kappa -1}{\kappa+1}\right)

\left[G_1 + \frac{1}{\kappa-1} H_1\right] \\

K_{\rm II} & = \frac{F_x}{2\sqrt{\pi a}}

\left[G_2 + \frac{1}{\kappa+1} H_2\right]

\end{align}

where

:

\begin{align}

G_1 & = 1 - \text{Re}\left[\frac{a+z}{\sqrt{z^2-a^2}}\right] \,,\,\,

G_2 = - \text{Im}\left[\frac{a+z}{\sqrt{z^2-a^2}}\right] \\

H_1 & = \text{Re}\left[\frac{a(\bar{z}-z)}{(\bar{z}-a)\sqrt{{\bar{z}}^2-a^2}}\right] \,,\,\,

H_2 = -\text{Im}\left[\frac{a(\bar{z}-z)}{(\bar{z}-a)\sqrt{{\bar{z}}^2-a^2}}\right]

\end{align}

with z = x + iy, \bar{z} = x - iy, \kappa = 3-4\nu for plane strain, \kappa= (3-\nu)/(1+\nu) for plane stress, and \nu is the Poisson's ratio.

The stress intensity factors for F_y at tip B are

:

\begin{align}

K_{\rm I} & = \frac{F_y}{2\sqrt{\pi a}}

\left[G_2 - \frac{1}{\kappa+1} H_2\right] \\

K_{\rm II} & = -\frac{F_y}{2\sqrt{\pi a}}\left(\frac{\kappa -1}{\kappa+1}\right)

\left[G_1 - \frac{1}{\kappa-1} H_1\right] \,.

\end{align}

The stress intensity factors at the tip A (x = -a) can be determined from the above relations. For the load F_x at location (x,y),

:

K_{\rm I}(-a; x,y) = -K_{\rm I}(a; -x,y) \,,\,\,

K_{\rm II}(-a; x,y) = K_{\rm II}(a; -x,y) \,.

Similarly for the load F_y,

:

K_{\rm I}(-a; x,y) = K_{\rm I}(a; -x,y) \,,\,\,

K_{\rm II}(-a; x,y) = -K_{\rm II}(a; -x,y) \,.

|File:CrackFinitePlatePointForce.svg

= Loaded crack in a plate =

align = "left" valign = "top"

|

If the crack is loaded by a point force F_y located at y=0 and -a < x < a, the stress intensity factors at point B are

:

K_{\rm I} = \frac{F_y}{2\sqrt{\pi a}}\sqrt{\frac{a+x}{a-x}}\,,\,\,

K_{\rm II} = -\frac{F_x}{2\sqrt{\pi a}}\left(\frac{\kappa -1}{\kappa+1}\right) \,.

If the force is distributed uniformly between -a < x < a, then the stress intensity factor at tip B is

:

K_{\rm I} = \frac{1}{2\sqrt{\pi a}}\int_{-a}^a F_y(x)\,\sqrt{\frac{a+x}{a-x}}\,{\rm d}x\,,\,\,

K_{\rm II} = -\frac{1}{2\sqrt{\pi a}}\left(\frac{\kappa -1}{\kappa+1}\right)\int_{-a}^a F_y(x)\,{\rm d}x, \,.

:

:

|File:loadedCrackPlate.svg

= Stack of Parallel Cracks in an Infinite Plate<ref>{{Cite book |last=Kundu |first=Tribikram |date=2008-01-30 |title=Fundamentals of Fracture Mechanics |url=http://dx.doi.org/10.1201/9781439878057 |doi=10.1201/9781439878057|isbn=9780429110054 }}</ref> =

If the crack spacing is much greater than the crack length (h >> a), the interaction effect between neighboring cracks can be ignored, and the stress intensity factor is equal to that of a single crack of length 2a.

Then the stress intensity factor at crack tip is

\begin{align}

K_{\rm I} & = \sigma\sqrt{\pi a}

\end{align}

If the crack length is much greater than the spacing (a >> h ), the cracks can be considered as a stack of semi-infinite cracks.

Then the stress intensity factor at crack tip is

\begin{align}

K_{\rm I} & = \sigma\sqrt{h}

\end{align}

= Compact tension specimen =

align = "left" valign = "top"

|

The stress intensity factor at the crack tip of a compact tension specimen is{{cite book|title=Applied mechanics of solids|author=Bower, A. F.| year=2009| publisher=CRC Press.}}

:

\begin{align}

K_{\rm I} & = \frac{P}{B}\sqrt{\frac{\pi}{W}}\left[16.7\left(\frac{a}{W}\right)^{1/2} - 104.7\left(\frac{a}{W}\right)^{3/2}

+ 369.9\left(\frac{a}{W}\right)^{5/2} \right.\\

& \qquad \left.- 573.8\left(\frac{a}{W}\right)^{7/2} + 360.5\left(\frac{a}{W}\right)^{9/2} \right]

\end{align}

where P is the applied load, B is the thickness of the specimen, a is the crack length, and

W is the width of the specimen.

|File:CompactTensionSpecimen.svg

= Single-edge notch-bending specimen =

align = "left" valign = "top"

|

The stress intensity factor at the crack tip of a single-edge notch-bending specimen is

:

\begin{align}

K_{\rm I} & = \frac{4P}{B}\sqrt{\frac{\pi}{W}}\left[1.6\left(\frac{a}{W}\right)^{1/2} - 2.6\left(\frac{a}{W}\right)^{3/2}

+ 12.3\left(\frac{a}{W}\right)^{5/2} \right.\\

& \qquad \left.- 21.2\left(\frac{a}{W}\right)^{7/2} + 21.8\left(\frac{a}{W}\right)^{9/2} \right]

\end{align}

where P is the applied load, B is the thickness of the specimen, a is the crack length, and

W is the width of the specimen.

|File:SingleEdgeNotchBending.svg

See also

References

{{reflist|2}}