sumset

{{Short description|Set of pairwise sums of elements of two sets}}

{{inline |date=May 2024}}

In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets A and B of an abelian group G (written additively) is defined to be the set of all sums of an element from A with an element from B. That is,

:A + B = \{a+b : a \in A, b \in B\}.

The n-fold iterated sumset of A is

:nA = A + \cdots + A,

where there are n summands.

Many of the questions and results of additive combinatorics and additive number theory can be phrased in terms of sumsets. For example, Lagrange's four-square theorem can be written succinctly in the form

:4\,\Box = \mathbb{N},

where \Box is the set of square numbers. A subject that has received a fair amount of study is that of sets with small doubling, where the size of the set A+A is small (compared to the size of A); see for example Freiman's theorem.

See also

References

  • {{ cite book | author=Henry Mann | authorlink=Henry Mann | title=Addition Theorems: The Addition Theorems of Group Theory and Number Theory | publisher=Robert E. Krieger Publishing Company | url=http://www.krieger-publishing.com/subcats/MathematicsandStatistics/mathematicsandstatistics.html | location=Huntington, New York | year=1976 | edition=Corrected reprint of 1965 Wiley | isbn=0-88275-418-1

}}

  • {{cite book | zbl=0722.11007 | last=Nathanson | first=Melvyn B. | chapter=Best possible results on the density of sumsets | pages=395–403 | editor1-last=Berndt | editor1-first=Bruce C. | editor1-link=Bruce C. Berndt | editor2-last=Diamond | editor2-first=Harold G. | editor3-last=Halberstam | editor3-first=Heini | editor3-link=Heini Halberstam |display-editors = 3 | editor4-last=Hildebrand | editor4-first=Adolf | title=Analytic number theory. Proceedings of a conference in honor of Paul T. Bateman, held on April 25-27, 1989, at the University of Illinois, Urbana, IL (USA) | series=Progress in Mathematics | volume=85 | location=Boston | publisher=Birkhäuser | year=1990 | isbn=0-8176-3481-9 }}
  • {{cite book | first=Melvyn B. | last=Nathanson | title=Additive Number Theory: Inverse Problems and the Geometry of Sumsets | volume=165 | series=Graduate Texts in Mathematics | publisher=Springer-Verlag | year=1996 | isbn=0-387-94655-1 | zbl=0859.11003 }}
  • Terence Tao and Van Vu, Additive Combinatorics, Cambridge University Press 2006.