superatom

{{short description|Atom cluster that exhibits properties of elemental atoms}}

In chemistry, a superatom is any cluster of atoms that seem to exhibit some of the properties of elemental atoms.{{cite journal |last1=Ariyarathna |first1=Isuru R. |title=Superatomic Chelates: The Cases of Metal Aza-Crown Ethers and Cryptands |journal=Inorganic Chemistry |date=21 December 2021 |volume=61 |issue=1 |pages=579–585 |doi=10.1021/acs.inorgchem.1c03261|pmid=34932345 }} One example of a superatom is the cluster {{chem|Al|13|4=−}}.{{Cite web |title=Developing Superatom Science |url=https://cen.acs.org/articles/91/i15/Developing-Superatom-Science.html |access-date=2024-12-21 |website=Chemical & Engineering News |language=en}}

Sodium atoms, when cooled from vapor, naturally condense into clusters, preferentially containing a magic number of atoms (2, 8, 20, 40, 58, etc.), with the outermost electron of each atom entering an orbital encompassing all the atoms in the cluster. Superatoms tend to behave chemically in a way that will allow them to have a closed shell of electrons, in this new counting scheme.{{cn|date=March 2021}}

Aluminium clusters

Certain aluminium clusters have superatom properties. These aluminium clusters are generated as anions ({{chem|Al|n|−}} with n = 1, 2, 3, … ) in helium gas and reacted with a gas containing iodine. When analyzed by mass spectrometry one main reaction product turns out to be {{chem|Al|13|I|−}}.{{cite journal | last=Bergeron | first=D. E. | title=Formation of {{chem|Al|13|I|−}}: Evidence for the Superhalogen Character of Al13 | journal=Science | publisher=American Association for the Advancement of Science (AAAS) | volume=304 | issue=5667 | date=2 April 2004 | issn=0036-8075 | doi=10.1126/science.1093902 | pmid=15066775 | pages=84–87| s2cid=26728239 }} These clusters of 13 aluminium atoms with an extra electron added do not appear to react with oxygen when it is introduced in the same gas stream, indicating a halide-like character and a magic number of 40 free electrons. Such a cluster is known as a superhalogen.{{Cite journal|last1=Reddy|first1=G. Naaresh|last2=Parida|first2=Rakesh|last3=Giri|first3=Santanab|date=2017-12-12|title=Functionalized deltahedral Zintl complexes Ge9R3 (R = CF3, CN, and NO2): a new class of superhalogens|journal=Chemical Communications|language=en|volume=53|issue=99|pages=13229–13232|doi=10.1039/C7CC08120K|pmid=29182179|issn=1364-548X}}{{Cite journal|last1=Giri|first1=Santanab|last2=Child|first2=Brandon Z.|last3=Jena|first3=Puru|date=2014|title=Organic Superhalogens|journal=ChemPhysChem|language=en|volume=15|issue=14|pages=2903–2908|doi=10.1002/cphc.201402472|pmid=25056518|issn=1439-7641}}{{Cite journal|last1=Reddy|first1=Gorre Naaresh|last2=Giri|first2=Santanab|date=2016-05-10|title=Super/hyperhalogen aromatic heterocyclic compounds|journal=RSC Advances|language=en|volume=6|issue=52|pages=47145–47150|doi=10.1039/C6RA08625J|bibcode=2016RSCAd...647145R|issn=2046-2069}}{{Cite journal |last1=Sinha |first1=Swapan |last2=Jena |first2=Puru |last3=Giri |first3=Santanab |date=2022-08-12 |title=Functionalized nona-silicide [Si9R3] Zintl clusters: a new class of superhalogens |journal=Physical Chemistry Chemical Physics |volume=24 |issue=35 |pages=21105–21111 |language=en |doi=10.1039/D2CP02619H |pmid=36018293 |bibcode=2022PCCP...2421105S |osti=1978872 |s2cid=251551751 |issn=1463-9084}} The cluster component in {{chem|Al|13|I|−}} ion is similar to an iodide ion or better still a bromide ion. The related {{chem|Al|13|I|2|−}} cluster is expected to behave chemically like the triiodide ion.

Similarly it has been noted that {{chem|Al|14}} clusters with 42 electrons (2 more than the magic numbers) appear to exhibit the properties of an alkaline earth metal which typically adopt +2 valence states. This is only known to occur when there are at least 3 iodine atoms attached to an {{chem|Al|14|−}} cluster, {{chem|Al|14|I|3|−}}. The anionic cluster has a total of 43 itinerant electrons, but the three iodine atoms each remove one of the itinerant electrons to leave 40 electrons in the jellium shell.Philip Ball, "A New Kind of Alchemy", New Scientist Issue dated 2005-04-16.{{cite journal | last=Bergeron | first=D. E. | title=Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts | journal=Science | publisher=American Association for the Advancement of Science (AAAS) | volume=307 | issue=5707 | date=14 January 2005 | issn=0036-8075 | doi=10.1126/science.1105820 | pages=231–235| pmid=15653497 | bibcode=2005Sci...307..231B | s2cid=8003390 }}

It is particularly easy and reliable to study atomic clusters of inert gas atoms by computer simulation because interaction between two atoms can be approximated very well by the Lennard-Jones potential. Other methods are readily available and it has been established that the magic numbers are 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, etc.{{cite journal | last1=Harris | first1=I. A. | last2=Kidwell | first2=R. S. | last3=Northby | first3=J. A. | title=Structure of Charged Argon Clusters Formed in a Free Jet Expansion | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=53 | issue=25 | date=17 December 1984 | issn=0031-9007 | doi=10.1103/physrevlett.53.2390 | pages=2390–2393| bibcode=1984PhRvL..53.2390H | s2cid=13793440 | url=https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1209&context=phys_facpubs }}

  • {{chem|Al|7}} = the property is similar to germanium atoms.
  • {{chem|Al|13}} = the property is similar to halogen atoms, more specifically, chlorine.
  • {{chem|Al|13|I|x|−}}, where {{chem|1=x = 1–13}}.[http://etd.vcu.edu/theses/available/etd-01102007-131059/unrestricted/jonesno_phd.pdf Naiche Owen Jones, 2006.]{{Dead link|date=June 2018 |bot=InternetArchiveBot |fix-attempted=no }}{{unreliable source|date=January 2025}}
  • {{chem|Al|14}} = the property is similar to alkaline earth metals.
  • {{chem|Al|14|I|x|−}}, where {{chem|1=x = 1–14}}.
  • {{chem|Al|23}}
  • {{chem|Al|37}}
  • {{chem|Al|5|O|4|-}} {{cite journal | title=Al5O4 Superatom with Potential for New Materials Design | year = 2008| doi = 10.1021/ct800232b| last1 = Das| first1 = Ujjal| last2 = Raghavachari| first2 = Krishnan| journal = Journal of Chemical Theory and Computation| volume = 4| issue = 12| pages = 2011–2019| pmid = 26620474}}

Other clusters

  • {{chem2|Li(HF)3Li}} = the {{chem2|(HF)3}} interior causes 2 valence electrons from the Li to orbit the entire molecule as if it were an atom's nucleus.{{cite journal | last1=Sun | first1=Xiao-Ying | last2=Li | first2=Zhi-Ru | last3=Wu | first3=Di | last4=Sun | first4=Chia-Chung | title=Extraordinary superatom containing double shell nucleus: Li(HF)3Li connected mainly by intermolecular interactions | journal=International Journal of Quantum Chemistry | publisher=Wiley | volume=107 | issue=5 | year=2007 | issn=0020-7608 | doi=10.1002/qua.21246 | pages=1215–1222| bibcode=2007IJQC..107.1215S }}
  • {{chem2|Li(NH3)4}} = has one diffuse electron orbiting around {{chem2|Li(NH3)4+}} core, i.e., mimics an alkali-metal atom.{{Cite journal|last1=Ariyarathna|first1=Isuru R.|last2=Pawłowski|first2=Filip|last3=Ortiz|first3=Joseph Vincent|last4=Miliordos|first4=Evangelos|date=2018|title=Molecules mimicking atoms: monomers and dimers of alkali metal solvated electron precursors|journal=Physical Chemistry Chemical Physics|language=en|volume=20|issue=37|pages=24186–24191|doi=10.1039/C8CP05497E|pmid=30209476|bibcode=2018PCCP...2024186A|issn=1463-9076}}{{Cite thesis|last=Ariyarathna|first=Isuru|date=2021-03-01|title=First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides|degree=PhD|url=https://etd.auburn.edu//handle/10415/7601|language=en}}{{unreliable source|date=January 2025}}
  • {{chem2|Be(NH3)4}} = has two diffuse electrons orbiting around {{chem2|Be(NH3)4(2+)}} core, i.e., mimics He-atom.{{Cite journal|last1=Ariyarathna|first1=Isuru R.|last2=Khan|first2=Shahriar N.|last3=Pawłowski|first3=Filip|last4=Ortiz|first4=Joseph Vincent|last5=Miliordos|first5=Evangelos|date=2018-01-04|title=Aufbau Rules for Solvated Electron Precursors: Be(NH3)42+ Complexes and Beyond|journal=The Journal of Physical Chemistry Letters|language=en|volume=9|issue=1|pages=84–88|doi=10.1021/acs.jpclett.7b03000|pmid=29232138|issn=1948-7185|doi-access=free}}
  • {{chem2|VSi16F}} = has ionic bonding.{{cite journal | last1=Koyasu | first1=Kiichirou | last2=Atobe | first2=Junko | last3=Akutsu | first3=Minoru | last4=Mitsui | first4=Masaaki | last5=Nakajima | first5=Atsushi | title=Electronic and Geometric Stabilities of Clusters with Transition Metal Encapsulated by Silicon | journal=The Journal of Physical Chemistry A | publisher=American Chemical Society (ACS) | volume=111 | issue=1 | year=2007 | issn=1089-5639 | doi=10.1021/jp066757f | pages=42–49|pmid=17201386| bibcode=2007JPCA..111...42K}}
  • A cluster of 13 platinum atoms becomes highly paramagnetic, much more so than platinum itself.[http://nanotechweb.org/cws/article/tech/26782 Platinum nanoclusters go magnetic] {{Webarchive|url=https://web.archive.org/web/20071015064232/http://nanotechweb.org/cws/article/tech/26782 |date=2007-10-15}}, nanotechweb.org, 2007

Superatom complexes

Superatom complexes are a special group of superatoms that incorporate a metal core which is stabilized by organic ligands. In thiolate-protected gold cluster complexes, a simple electron counting rule can be used to determine the total number of electrons ({{mvar|ne}}) which correspond to a magic number:

:n_e = N\nu_A - M -z

where {{mvar|N}} is the number of metal atoms (A) in the core, {{mvar|v}} is the atomic valence, {{mvar|M}} is the number of electron withdrawing ligands, and {{mvar|z}} is the overall charge on the complex.{{cite journal | last1=Walter | first1=M. | last2=Akola | first2=J. | last3=Lopez-Acevedo | first3=O. | last4=Jadzinsky | first4=P. D. | last5=Calero | first5=G. | last6=Ackerson | first6=C. J. | last7=Whetten | first7=R. L. | last8=Gronbeck | first8=H. | last9=Hakkinen | first9=H. | title=A unified view of ligand-protected gold clusters as superatom complexes | journal=Proceedings of the National Academy of Sciences | volume=105 | issue=27 | date=1 June 2008 | issn=0027-8424 | doi=10.1073/pnas.0801001105 | pages=9157–9162| pmid=18599443 | pmc=2442568 | bibcode=2008PNAS..105.9157W |doi-access=free}} For example the Au102(p-MBA)44 has 58 electrons and corresponds to a closed shell magic number.{{cite journal | last1=Jadzinsky | first1=P. D. | last2=Calero | first2=G. | last3=Ackerson | first3=C. J. | last4=Bushnell | first4=D. A. | last5=Kornberg | first5=R. D. | title=Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution | journal=Science | publisher=American Association for the Advancement of Science (AAAS) | volume=318 | issue=5849 | date=19 October 2007 | issn=0036-8075 | doi=10.1126/science.1148624 | pmid=17947577 | pages=430–433| bibcode=2007Sci...318..430J | s2cid=1566019 }}

=Gold superatom complexes=

  • {{chem2|Au25(SMe)18-}}{{cite journal | last1=Akola | first1=Jaakko | last2=Walter | first2=Michael | last3=Whetten | first3=Robert L. | last4=Häkkinen | first4=Hannu | last5=Grönbeck | first5=Henrik | title=On the Structure of Thiolate-Protected Au25 | journal=Journal of the American Chemical Society | volume=130 | issue=12 | year=2008 | issn=0002-7863 | doi=10.1021/ja800594p | pmid=18321117 | pages=3756–3757| bibcode=2008JAChS.130.3756A }}
  • {{chem2|Au102(p\-MBA)44}}{{cite journal |last1=Levi-Kalisman |first1=Yael |last2=Jadzinsky |first2=Pablo D. |last3=Kalisman |first3=Nir |last4=Tsunoyama |first4=Hironori |last5=Tsukuda |first5=Tatsuya |last6=Bushnell |first6=David A. |last7=Kornberg |first7=Roger D. |author-link7=Roger D. Kornberg |title=Synthesis and Characterization of Au102(p-MBA)44 Nanoparticles |journal=Journal of the American Chemical Society |date=9 March 2011 |volume=133 |issue=9 |pages=2976–2982 |doi=10.1021/ja109131w|pmid=21319754 |bibcode=2011JAChS.133.2976L }}
  • {{chem2|Au144(SR)60}}{{cite journal | last1=Lopez-Acevedo | first1=Olga | last2=Akola | first2=Jaakko | last3=Whetten | first3=Robert L. | last4=Grönbeck | first4=Henrik | last5=Häkkinen | first5=Hannu |author-link5=Hannu Häkkinen | title=Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 | journal=The Journal of Physical Chemistry C | publisher=American Chemical Society | volume=113 | issue=13 | date=16 January 2009 | issn=1932-7447 | doi=10.1021/jp8115098 | pages=5035–5038 }}

=Other superatom complexes=

  • {{chem2|Ga23(N(Si(CH3)3)2)11}}{{cite journal | last1=Hartig | first1=Jens | last2=Stößer | first2=Anna | last3=Hauser | first3=Petra | last4=Schnöckel | first4=Hansgeorg | title=A Metalloid Ga23{N(SiMe3)2}11 Cluster: The Jellium Model Put to Test | journal=Angewandte Chemie International Edition | publisher=Wiley | volume=46 | issue=10 | date=26 February 2007 | issn=1433-7851 | doi=10.1002/anie.200604311 | pmid=17230594 | pages=1658–1662}}
  • {{chem2|Al50(C5(CH3)5)12}}{{cite journal | last1=Clayborne | first1=Peneé A. | last2=Lopez-Acevedo | first2=Olga | last3=Whetten | first3=Robert L. | last4=Grönbeck | first4=Henrik | last5=Häkkinen | first5=Hannu | title=The Al50Cp*12 Cluster – A 138-Electron Closed Shell (L = 6) Superatom | journal=European Journal of Inorganic Chemistry | publisher=Wiley | volume=2011 | issue=17 | date=13 May 2011 | issn=1434-1948 | doi=10.1002/ejic.201100374 | pages=2649–2652}}
  • {{chem2|Re6Se8Cl2}} – In 2018 researchers produced 15-nm-thick flakes of this superatomic material. They anticipate that a monolayer will be a superatomic 2-D semiconductor and offer new 2-D materials with unusual, tunable properties.{{Cite news|url=https://phys.org/news/2018-02-superatomic-d-semiconductor.html#jCp|title=Researchers create first superatomic 2-D semiconductor|last=Zyga|first=Lisa|work=Phys.org|access-date=2018-02-18}}
  • Organo− Zintl-based superatoms: [{{chem2|Ge9(CHO)3}}] and [{{chem2|Ge9(CHO)}}]{{Cite journal|date=2017-10-16|title=Organo−Zintl-based superatoms: [Ge9(CHO)3] and [Ge9(CHO)]|journal=Chemical Physics Letters|language=en|volume=686|pages=195–202|doi=10.1016/j.cplett.2017.08.056|issn=0009-2614|last1=Reddy|first1=G. Naaresh|last2=Jena|first2=Puru|last3=Giri|first3=Santanab|bibcode=2017CPL...686..195R|doi-access=free}}
  • {{chem2|[Cu43Al12](Cp\*)12|link=Heterometallic copper-aluminum superatom}}{{cite journal |doi=10.1002/anie.201806039 |pmid=29981271 |title=The Mackay-Type Cluster [Cu43 Al12 ](Cp*)12 : Open-Shell 67-Electron Superatom with Emerging Metal-Like Electronic Structure |journal=Angewandte Chemie International Edition |volume=57 |issue=44 |pages=14630–14634 |year=2018 |last1=Weßing |first1=Jana |last2=Ganesamoorthy |first2=Chelladurai |last3=Kahlal |first3=Samia |last4=Marchal |first4=Rémi |last5=Gemel |first5=Christian |last6=Cador |first6=Olivier |last7=Da Silva |first7=Augusto C. H. |last8=Da Silva |first8=Juarez L. F. |last9=Saillard |first9=Jean-Yves |last10=Fischer |first10=Roland A. |s2cid=49714793 |url=https://hal-univ-rennes1.archives-ouvertes.fr/hal-01834003/file/We%C3%9Fing%20et%20al_The%20Mackay-type%20cluster%20%5BCu43Al12%5D%28Cp%2912.pdf }}

See also

References

{{Reflist}}

  • "Designer Magnetic Superatoms", J.U. Reveles, et al. 2009 {{doi|10.1038/nchem.249}}
  • "A unified view of ligand-protected gold clusters as superatom complexes", M. Walter et al. 2008 {{doi|10.1073/pnas.0801001105}}
  • "Gold Superatom Complexes", P.D. Jadzinsky et al. 2007 {{doi|10.1126/science.1148624}}
  • "Multiple Valence Superatoms", J.U. Reveles, S.N. Khanna, P.J. Roach, and A.W. Castleman Jr., 2006 {{doi|10.1073/pnas.060878110}}

{{Particles}}

Category:Cluster chemistry

Category:Quantum chemistry

Category:Atoms