symmetric logarithmic derivative

{{context|date=December 2019}}

The symmetric logarithmic derivative is an important quantity in quantum metrology, and is related to the quantum Fisher information.

Definition

Let \rho and A be two operators, where \rho is Hermitian and positive semi-definite. In most applications, \rho and A fulfill further properties, that also A is Hermitian and \rho is a density matrix (which is also trace-normalized), but these are not required for the definition.

The symmetric logarithmic derivative L_\varrho(A) is defined implicitly by the equation{{cite journal | last1=Braunstein | first1=Samuel L. | last2=Caves | first2=Carlton M. | authorlink2=Carlton Caves |title=Statistical distance and the geometry of quantum states | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=72 | issue=22 | date=1994-05-30 | issn=0031-9007 | doi=10.1103/physrevlett.72.3439 | pmid=10056200 | pages=3439–3443| bibcode=1994PhRvL..72.3439B }}{{cite journal |last1=Braunstein |first1=Samuel L. |last2=Caves |first2=Carlton M. |last3=Milburn |first3=G.J. |authorlink2=Carlton Caves |title=Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance |journal=Annals of Physics |date=April 1996 |volume=247 |issue=1 |pages=135–173 | arxiv=quant-ph/9507004 | doi=10.1006/aphy.1996.0040|bibcode=1996AnPhy.247..135B |s2cid=358923 }}

:i[\varrho,A]=\frac{1}{2} \{\varrho, L_\varrho(A)\}

where [X,Y]=XY-YX is the commutator and \{X,Y\}=XY+YX is the anticommutator. Explicitly, it is given by{{cite journal |last1=Paris |first1=Matteo G. A. |title=Quantum Estimation for Quantum Technology|journal=International Journal of Quantum Information |date=21 November 2011 |volume=07 |issue=supp01 |pages=125–137 |doi=10.1142/S0219749909004839|arxiv=0804.2981 |s2cid=2365312 }}

:L_\varrho(A)=2i\sum_{k,l} \frac{\lambda_k-\lambda_l}{\lambda_k+\lambda_l} \langle k \vert A \vert l\rangle \vert k\rangle \langle l \vert

where \lambda_k and \vert k\rangle are the eigenvalues and eigenstates of \varrho, i.e. \varrho\vert k\rangle=\lambda_k\vert k\rangle and \varrho=\sum_k \lambda_k \vert k\rangle\langle k\vert.

Formally, the map from operator A to operator L_\varrho(A) is a (linear) superoperator.

Properties

The symmetric logarithmic derivative is linear in A:

:L_\varrho(\mu A)=\mu L_\varrho(A)

:L_\varrho(A+B)=L_\varrho(A)+L_\varrho(B)

The symmetric logarithmic derivative is Hermitian if its argument A is Hermitian:

:A=A^\dagger\Rightarrow[L_\varrho(A)]^\dagger=L_\varrho(A)

The derivative of the expression \exp(-i\theta A)\varrho\exp(+i\theta A) w.r.t. \theta at \theta=0 reads

:\frac{\partial}{\partial\theta}\Big[\exp(-i\theta A)\varrho\exp(+i\theta A)\Big]\bigg\vert_{\theta=0} = i(\varrho A-A\varrho) = i[\varrho,A] = \frac{1}{2}\{\varrho, L_\varrho(A)\}

where the last equality is per definition of L_\varrho(A); this relation is the origin of the name "symmetric logarithmic derivative". Further, we obtain the Taylor expansion

:\exp(-i\theta A)\varrho\exp(+i\theta A) = \varrho + \underbrace{\frac{1}{2}\theta\{\varrho, L_\varrho(A)\}}_{=i\theta[\varrho,A]} + \mathcal{O}(\theta^2).

References