table of thermodynamic equations

{{Short description|none}}

{{Thermodynamics|cTopic=Equations}}

Common thermodynamic equations and quantities in thermodynamics, using mathematical notation, are as follows:

Definitions

{{Main article|List of thermodynamic properties|Thermodynamic potential|Free entropy|Defining equation (physical chemistry)}}

Many of the definitions below are also used in the thermodynamics of chemical reactions.

= General basic quantities =

class="wikitable"
scope="col" width="200" | Quantity (common name/s)

! scope="col" width="125" | (Common) symbol/s

! scope="col" width="125" | SI unit

! scope="col" width="100" | Dimension

Number of molecules

| N

| 1

| 1

Amount of substance

| n

| mol

| N

Temperature

| T

| K

| Θ

Heat Energy

| Q, q

| J

| ML2T−2

Latent heat

| QL

| J

| ML2T−2

= General derived quantities =

class="wikitable"
scope="col" width="200" | Quantity (common name/s)

! scope="col" width="125" | (Common) symbol/s

! scope="col" width="200" | Defining equation

! scope="col" width="125" | SI unit

! scope="col" width="100" | Dimension

Thermodynamic beta, inverse temperature

| β

| \beta = 1/k_\text{B} T

| J−1

| T2M−1L−2

Thermodynamic temperature

| τ

| \tau = k_\text{B} T

\tau = k_\text{B} \left (\partial U/\partial S \right )_{N}

1/\tau = 1/k_\text{B} \left (\partial S/\partial U \right )_{N}

| J

| ML2T−2

Entropy

| S

| S = -k_\text{B}\sum_i p_i\ln p_i

S = -\left (\partial F/\partial T \right )_{V,N} ,

S = -\left (\partial G/\partial T \right )_{P,N}

| J⋅K−1

| ML2T−2Θ−1

Pressure

| P

| P = - \left (\partial F/\partial V \right )_{T,N}

P = - \left (\partial U/\partial V \right )_{S,N}

| Pa

| ML−1T−2

Internal Energy

| U

| U = \sum_i E_i

| J

| ML2T−2

Enthalpy

| H

| H = U+pV

| J

| ML2T−2

Partition Function

| Z

|

| 1

| 1

Gibbs free energy

| G

| G = H - TS

| J

| ML2T−2

Chemical potential (of component i in a mixture)

| μi

| \mu_i = \left (\partial U/\partial N_i \right )_{N_{j \neq i}, S, V }

\mu_i = \left (\partial F/\partial N_i \right )_{T, V } , where F is not proportional to N because \mu_i depends on pressure.

\mu_i = \left (\partial G/\partial N_i \right )_{T, P } , where G is proportional to N (as long as the molar ratio composition of the system remains the same) because \mu_i depends only on temperature and pressure and composition.

\mu_i/\tau = -1/k_\text{B} \left (\partial S/\partial N_i \right )_{U,V}

| J

| ML2T−2

Helmholtz free energy

| A, F

| F = U - TS

| J

| ML2T−2

Landau potential, Landau free energy, Grand potential

| Ω, ΦG

| \Omega = U - TS - \mu N\

| J

| ML2T−2

Massieu potential, Helmholtz free entropy

| Φ

| \Phi = S - U/T

| J⋅K−1

| ML2T−2Θ−1

Planck potential, Gibbs free entropy

| Ξ

| \Xi = \Phi - pV/T

| J⋅K−1

| ML2T−2Θ−1

= Thermal properties of matter =

{{Main articles|Heat capacity|Thermal expansion}}

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI unit

! scope="col" width="100" | Dimension

General heat/thermal capacity

| C

| C = \partial Q/\partial T

| J⋅K−1

| ML2T−2Θ−1

Heat capacity (isobaric)

| Cp

| C_{p} = \partial H/\partial T

| J⋅K−1

| ML2T−2Θ−1

Specific heat capacity (isobaric)

| Cmp

| C_{mp} = \partial^2 Q/\partial m \partial T

| J⋅kg−1⋅K−1

| L2T−2Θ−1

Molar specific heat capacity (isobaric)

| Cnp

| C_{np} = \partial^2 Q/\partial n \partial T

| J⋅K−1⋅mol−1

| ML2T−2Θ−1N−1

Heat capacity (isochoric/volumetric)

| CV

| C_{V} = \partial U/\partial T

| J⋅K−1

| ML2T−2Θ−1

Specific heat capacity (isochoric)

| CmV

| C_{mV} = \partial^2 Q/\partial m \partial T

| J⋅kg−1⋅K−1

| L2T−2Θ−1

Molar specific heat capacity (isochoric)

| CnV

| C_{nV} = \partial^2 Q/\partial n \partial T

| J⋅K⋅−1 mol−1

| ML2T−2Θ−1N−1

Specific latent heat

| L

| L = \partial Q/ \partial m

| J⋅kg−1

| L2T−2

Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient

| γ

| \gamma = C_p/C_V = c_p/c_V = C_{mp}/C_{mV}

| 1

| 1

= Thermal transfer =

{{Main|Thermal conductivity}}

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI unit

! scope="col" width="100" | Dimension

Temperature gradient

| No standard symbol

| \nabla T

| K⋅m−1

| ΘL−1

Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

| P

| P = \mathrm{d} Q/\mathrm{d} t

| W

| ML2T−3

Thermal intensity

| I

| I = \mathrm{d} P/\mathrm{d} A

| W⋅m−2

| MT−3

Thermal/heat flux density (vector analogue of thermal intensity above)

| q

| Q = \iint \mathbf{q} \cdot \mathrm{d}\mathbf{S}\mathrm{d} t

| W⋅m−2

| MT−3

Equations

The equations in this article are classified by subject.

= Thermodynamic processes =

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="10" | Equations

Isentropic process (adiabatic and reversible)

| Q = 0, \quad \Delta U = -W

For an ideal gas

p_1 V_1^{\gamma} = p_2 V_2^{\gamma}

T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}

p_1^{1-\gamma} T_1^{\gamma} = p_2^{1 - \gamma} T_2^{\gamma}

Isothermal process

|\Delta U = 0, \quad W = Q

For an ideal gas

W=kTN \ln(V_2/V_1)

W=nRT \ln(V_2/V_1)

Isobaric process

|p1 = p2, p = constant

W = p \Delta V, \quad Q = \Delta U + p \delta V

Isochoric process

| V1 = V2, V = constant

W = 0, \quad Q = \Delta U

Free expansion

| \Delta U = 0

Work done by an expanding gas

| Process

W = \int_{V_1}^{V_2} p \mathrm{d}V

Net work done in cyclic processes

W = \oint_\mathrm{cycle} p \mathrm{d}V = \oint_\mathrm{cycle}\Delta Q

= Kinetic theory =

class="wikitable"

|+Ideal gas equations

! scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Ideal gas law

| {{plainlist}}

{{endplainlist}}

| pV = nRT = kTN

\frac{p_1 V_1}{p_2 V_2} = \frac{n_1 T_1}{n_2 T_2} = \frac{N_1 T_1}{N_2 T_2}

Pressure of an ideal gas

| {{plainlist}}

  • m = mass of one molecule
  • Mm = molar mass

{{endplainlist}}

| p = \frac{Nm \langle v^2 \rangle}{3V} = \frac{nM_m \langle v^2 \rangle}{3V} = \frac{1}{3}\rho \langle v^2 \rangle

== Ideal gas ==

class="wikitable sortable mw-collapsible"

|+

Quantity

! General Equation

! Isobaric
Δp = 0

! Isochoric
ΔV = 0

! Isothermal
ΔT = 0

! Adiabatic
Q=0

Work
W

| align="center" | \delta W = -p dV\;

| align="center" | -p\Delta V\;

| align="center" | 0\;

| align="center" | -nRT\ln\frac{V_2}{V_1}\;

-nRT\ln\frac{P_1}{P_2}\;

| align="center" | \frac{PV^\gamma (V_f^{1-\gamma} - V_i^{1-\gamma}) } {1-\gamma} = C_V \left(T_2 - T_1 \right)

Heat Capacity
C

| align="center" | (as for real gas)

| align="center" | C_p = \frac{5}{2}nR {{br}}(for monatomic ideal gas)

C_p = \frac{7}{2}nR {{br}}(for diatomic ideal gas)

| align="center" | C_V = \frac{3}{2}nR {{br}}(for monatomic ideal gas)

C_V = \frac{5}{2}nR \;{{br}}(for diatomic ideal gas)

|

|

Internal Energy
ΔU

| align="center" | \Delta U = C_V \Delta T\;

| align="center" | Q + W\;{{br}}{{br}}Q_p - p\Delta V

| align="center" | Q\;{{br}}{{br}}C_V\left ( T_2-T_1 \right )

| align="center" | 0\;{{br}}Q=-W

| align="center" | W\;{{br}}C_V\left ( T_2-T_1 \right )

Enthalpy
ΔH

| align="center" | H=U+pV\;

| align="center" | C_p\left ( T_2-T_1 \right )\;

| align="center" | Q_V+V\Delta p\;

| align="center" | 0\;

| align="center" | C_p\left ( T_2-T_1 \right )\;

Entropy
Δs

| align="center" | \Delta S = C_V \ln{T_2 \over T_1} + nR \ln{V_2 \over V_1}{{br}}\Delta S = C_p \ln{T_2 \over T_1} - nR \ln{p_2 \over p_1}Keenan, Thermodynamics, Wiley, New York, 1947

| align="center" | C_p\ln\frac{T_2}{T_1}\;

| align="center" | C_V\ln\frac{T_2}{T_1}\;

| align="center" | nR\ln\frac{V_2}{V_1}\;{{br}}\frac{Q}{T}\;

| align="center" | C_p\ln\frac{V_2}{V_1}+C_V\ln\frac{p_2}{p_1}=0\;

Constant

| \;

| align="center" | \frac{V}{T}\;

| align="center" | \frac{p}{T}\;

| align="center" | p V\;

| align="center" | p V^\gamma\;

= Entropy =

  • S = k_\mathrm{B} \ln \Omega , where kB is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
  • dS = \frac{\delta Q}{T} , for reversible processes only

=Statistical physics=

Below are useful results from the Maxwell–Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity. The distribution is valid for atoms or molecules constituting ideal gases.

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Maxwell–Boltzmann distribution

| {{plainlist}}

  • v = velocity of atom/molecule,
  • m = mass of each molecule (all molecules are identical in kinetic theory),
  • γ(p) = Lorentz factor as function of momentum (see below)
  • Ratio of thermal to rest mass-energy of each molecule: \theta = k_\text{B} T/mc^2

{{endplainlist}}

K2 is the modified Bessel function of the second kind.

| Non-relativistic speeds

P\left ( v \right )=4\pi\left ( \frac{m}{2\pi k_\text{B} T} \right )^{3/2} v^2 e^{-mv^2/2 k_\text{B} T}

Relativistic speeds (Maxwell–Jüttner distribution)

f(p) = \frac{1}{4 \pi m^3 c^3 \theta K_2(1/\theta)} e^{-\gamma(p)/\theta}

Entropy Logarithm of the density of states

| {{plainlist}}

  • Pi = probability of system in microstate i
  • Ω = total number of microstates

{{endplainlist}}

| S = - k_\text{B}\sum_i P_i \ln P_i = k_\mathrm{B}\ln \Omega

where:

P_i = 1/\Omega

Entropy change

|

| \Delta S = \int_{Q_1}^{Q_2} \frac{\mathrm{d}Q}{T}

\Delta S = k_\text{B} N \ln\frac{V_2}{V_1} + N C_V \ln\frac{T_2}{T_1}

Entropic force

|

| \mathbf{F}_\mathrm{S} = -T \nabla S

Equipartition theorem

| df = degree of freedom

| Average kinetic energy per degree of freedom

\langle E_\mathrm{k} \rangle = \frac{1}{2}kT

Internal energy

U = d_\text{f} \langle E_\mathrm{k} \rangle = \frac{d_\text{f}}{2}kT

Corollaries of the non-relativistic Maxwell–Boltzmann distribution are below.

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Mean speed

|

| \langle v \rangle = \sqrt{\frac{8 k_\text{B} T}{\pi m}}

Root mean square speed

|

| v_\mathrm{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3 k_\text{B} T}{m}}

Modal speed

|

| v_\mathrm{mode} = \sqrt{\frac{2 k_\text{B} T}{m}}

Mean free path

| {{plainlist}}

  • σ = effective cross-section
  • n = volume density of number of target particles
  • {{ell}} = mean free path

{{endplainlist}}

| \ell = 1/\sqrt{2} n \sigma

= Quasi-static and reversible processes =

For quasi-static and reversible processes, the first law of thermodynamics is:

: dU=\delta Q - \delta W

where δQ is the heat supplied to the system and δW is the work done by the system.

= Thermodynamic potentials =

{{main|Thermodynamic potentials}}

{{See also|Maxwell relations}}

The following energies are called the thermodynamic potentials,

: {{table of thermodynamic potentials}}

and the corresponding fundamental thermodynamic relations or "master equations"Physical chemistry, P.W. Atkins, Oxford University Press, 1978, {{ISBN|0 19 855148 7}} are:

class="wikitable"
Potential

! Differential

Internal energy

| dU\left(S,V,{N_{i}}\right) = TdS - pdV + \sum_{i} \mu_{i} dN_i

Enthalpy

| dH\left(S,p,{N_{i}}\right) = TdS + Vdp + \sum_{i} \mu_{i} dN_{i}

Helmholtz free energy

| dF\left(T,V,{N_{i}}\right) = -SdT - pdV + \sum_{i} \mu_{i} dN_{i}

Gibbs free energy

| dG\left(T,p,{N_{i}}\right) = -SdT + Vdp + \sum_{i} \mu_{i} dN_{i}

= Maxwell's relations =

The four most common Maxwell's relations are:

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Thermodynamic potentials as functions of their natural variables

| {{plainlist}}

{{endplainlist}}

| \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V = \frac{\partial^2 U }{\partial S \partial V}

\left(\frac{\partial T}{\partial p}\right)_S = +\left(\frac{\partial V}{\partial S}\right)_p = \frac{\partial^2 H }{\partial S \partial p}

+\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V = - \frac{\partial^2 F }{\partial T \partial V}

-\left(\frac{\partial S}{\partial p}\right)_T = \left(\frac{\partial V}{\partial T}\right)_p = \frac{\partial^2 G }{\partial T \partial p}

More relations include the following.

class="wikitable"
\left ( {\partial S\over \partial U} \right )_{V,N} = { 1\over T }

| \left ( {\partial S\over \partial V} \right )_{N,U} = { p\over T }

| \left ( {\partial S\over \partial N} \right )_{V,U} = - { \mu \over T }

\left ( {\partial T\over \partial S} \right )_V = { T \over C_V }

| \left ( {\partial T\over \partial S} \right )_p = { T \over C_p }

|

-\left ( {\partial p\over \partial V} \right )_T = { 1 \over {VK_T} }

|

|

Other differential equations are:

class="wikitable"
Name

! H

! U

! G

Gibbs–Helmholtz equation

| H = -T^2\left(\frac{\partial \left(G/T\right)}{\partial T}\right)_p

| U = -T^2\left(\frac{\partial \left(F/T\right)}{\partial T}\right)_V

| G = -V^2\left(\frac{\partial \left(F/V\right)}{\partial V}\right)_T

| \left(\frac{\partial H}{\partial p}\right)_T = V - T\left(\frac{\partial V}{\partial T}\right)_p

| \left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p

|

= Quantum properties =

  • U = N k_\text{B} T^2 \left(\frac{\partial \ln Z}{\partial T}\right)_V
  • S = \frac{U}{T} + N k_\text{B} \ln Z - N k \ln N + Nk Indistinguishable Particles

where N is number of particles, h is that Planck constant, I is moment of inertia, and Z is the partition function, in various forms:

class="wikitable"
Degree of freedom

! Partition function

Translation

| Z_t = \frac{(2 \pi m k_\text{B} T)^\frac{3}{2} V}{h^3}

Vibration

| Z_v = \frac{1}{1 - e^\frac{-h \omega}{2 \pi k_\text{B} T}}

Rotation

| Z_r = \frac{2 I k_\text{B} T}{\sigma (\frac{h}{2 \pi})^2}

{{plainlist}}

{{endplainlist}}

Thermal properties of matter

class="wikitable"
Coefficients

! Equation

Joule-Thomson coefficient

| \mu_{JT} = \left(\frac{\partial T}{\partial p}\right)_H

Compressibility (constant temperature)

| K_T = -{ 1\over V } \left ( {\partial V\over \partial p} \right )_{T,N}

Coefficient of thermal expansion (constant pressure)

| \alpha_{p} = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_p

Heat capacity (constant pressure)

| C_p

= \left ( {\partial Q_{rev} \over \partial T} \right )_p

= \left ( {\partial U \over \partial T} \right )_p + p \left ( {\partial V \over \partial T} \right )_p

= \left ( {\partial H \over \partial T} \right )_p

= T \left ( {\partial S \over \partial T} \right )_p

Heat capacity (constant volume)

| C_V

= \left ( {\partial Q_{rev} \over \partial T} \right )_V

= \left ( {\partial U \over \partial T} \right )_V

= T \left ( {\partial S \over \partial T} \right )_V

class="toccolours collapsible collapsed" width="80%" style="text-align:left"

!Derivation of heat capacity (constant pressure)

Since

:

\left(\frac{\partial T}{\partial p}\right)_H

\left(\frac{\partial p}{\partial H}\right)_T

\left(\frac{\partial H}{\partial T}\right)_p

= -1

:

\begin{align}

\left(\frac{\partial T}{\partial p}\right)_H

& = -\left(\frac{\partial H}{\partial p}\right)_T

\left(\frac{\partial T}{\partial H}\right)_p

\\

& = \frac{-1}{\left(\frac{\partial H}{\partial T}\right)_p}

\left(\frac{\partial H}{\partial p}\right)_T

\end{align}

: C_p = \left(\frac{\partial H}{\partial T}\right)_p

:

\Rightarrow \left(\frac{\partial T}{\partial p}\right)_H

= -\frac{1}{C_p}

\left(\frac{\partial H}{\partial p}\right)_T

class="toccolours collapsible collapsed" width="80%" style="text-align:left"

!Derivation of heat capacity (constant volume)

Since

: dU = \delta Q_{rev} - \delta W_{rev} ,

(where δWrev is the work done by the system),

: \delta S = \frac{\delta Q_{rev}}{T}, \delta W_{rev}= p \delta V

: d U = T \delta S- p\delta V

:

\left(\frac{\partial U}{\partial T}\right)_V

= T\left(\frac{\partial S}{\partial T}\right)_V

- p\left(\frac{\partial V}{\partial T}\right)_V ; C_V = \left(\frac{\partial U}{\partial T}\right)_V

: \Rightarrow C_V = T\left(\frac{\partial S}{\partial T}\right)_V

= Thermal transfer =

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Net intensity emission/absorption

| {{plainlist}}

  • Texternal = external temperature (outside of system)
  • Tsystem = internal temperature (inside system)
  • ε = emissivity

{{endplainlist}}

| I = \sigma \epsilon \left ( T_\mathrm{external}^4 - T_\mathrm{system}^4 \right )

Internal energy of a substance

| {{plainlist}}

  • CV = isovolumetric heat capacity of substance
  • ΔT = temperature change of substance

{{endplainlist}}

| \Delta U = N C_V \Delta T

Meyer's equation

| {{plainlist}}

  • Cp = isobaric heat capacity
  • CV = isovolumetric heat capacity
  • n = amount of substance

{{endplainlist}}

| C_p - C_V = nR

Effective thermal conductivities

| {{plainlist}}

  • λi = thermal conductivity of substance i
  • λnet = equivalent thermal conductivity

{{endplainlist}}

| Series

\lambda_\mathrm{net} = \sum_j \lambda_j

Parallel

\frac{1}{\lambda}_\mathrm{net} = \sum_j \left ( \frac{1}{\lambda}_j \right )

= Thermal efficiencies =

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Equations

Thermodynamic engines

| {{plainlist}}

  • η = efficiency
  • W = work done by engine
  • QH = heat energy in higher temperature reservoir
  • QL = heat energy in lower temperature reservoir
  • TH = temperature of higher temp. reservoir
  • TL = temperature of lower temp. reservoir

{{endplainlist}}

| Thermodynamic engine:

\eta = \left |\frac{W}{Q_\text{H}} \right|

Carnot engine efficiency:

\eta_\text{c} = 1 - \left | \frac{Q_\text{L}}{Q_\text{H}} \right | = 1-\frac{T_\text{L}}{T_\text{H}}

Refrigeration

| K = coefficient of refrigeration performance

| Refrigeration performance

K = \left | \frac{Q_\text{L}}{W} \right |

Carnot refrigeration performance

K_\text{C} = \frac{|Q_\text{L}

Q_\text{H}
Q_\text{L}
= \frac{T_\text{L}}{T_\text{H}-T_\text{L}}

|-

|}

See also

References

{{reflist}}

{{refbegin|2}}

  • Atkins, Peter and de Paula, Julio Physical Chemistry, 7th edition, W.H. Freeman and Company, 2002 {{ISBN|0-7167-3539-3}}.
  • Chapters 1–10, Part 1: "Equilibrium".
  • {{cite journal | last=Bridgman | first=P. W. | title=A Complete Collection of Thermodynamic Formulas | journal=Physical Review | publisher=American Physical Society (APS) | volume=3 | issue=4 | date=1 March 1914 | issn=0031-899X | doi=10.1103/physrev.3.273|url=https://babel.hathitrust.org/cgi/pt?id=uc1.31210014450082&view=1up&seq=289 | pages=273–281| bibcode=1914PhRv....3..273B }}
  • Landsberg, Peter T. Thermodynamics and Statistical Mechanics. New York: Dover Publications, Inc., 1990. (reprinted from Oxford University Press, 1978).
  • Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
  • Reichl, L.E., A Modern Course in Statistical Physics, 2nd edition, New York: John Wiley & Sons, 1998.
  • Schroeder, Daniel V. Thermal Physics. San Francisco: Addison Wesley Longman, 2000 {{ISBN|0-201-38027-7}}.
  • Silbey, Robert J., et al. Physical Chemistry, 4th ed. New Jersey: Wiley, 2004.
  • Callen, Herbert B. (1985). Thermodynamics and an Introduction to Themostatistics, 2nd edition, New York: John Wiley & Sons.

{{refend}}