tensor decomposition
{{Short description|Process in algebra}}
{{Refimprove|date=June 2021}}
In multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors.{{cite journal|first1=MAO|last1=Vasilescu|first2=D|last2=Terzopoulos|title=Multilinear (tensor) image synthesis, analysis, and recognition [exploratory dsp]|journal=IEEE Signal Processing Magazine|date=2007 |volume=24|issue=6|pages=118–123|doi=10.1109/MSP.2007.906024 |bibcode=2007ISPM...24R.118V }}{{Cite journal |last1=Kolda |first1=Tamara G. |last2=Bader |first2=Brett W. |date=2009-08-06 |title=Tensor Decompositions and Applications |url=http://epubs.siam.org/doi/10.1137/07070111X |journal=SIAM Review |language=en |volume=51 |issue=3 |pages=455–500 |doi=10.1137/07070111X |bibcode=2009SIAMR..51..455K |s2cid=16074195 |issn=0036-1445|url-access=subscription }}{{Cite journal |last1=Sidiropoulos |first1=Nicholas D. |last2=De Lathauwer |first2=Lieven |last3=Fu |first3=Xiao |last4=Huang |first4=Kejun |last5=Papalexakis |first5=Evangelos E. |last6=Faloutsos |first6=Christos |date=2017-07-01 |title=Tensor Decomposition for Signal Processing and Machine Learning |url=https://ieeexplore.ieee.org/document/7891546 |journal=IEEE Transactions on Signal Processing |volume=65 |issue=13 |pages=3551–3582 |doi=10.1109/TSP.2017.2690524 |arxiv=1607.01668 |bibcode=2017ITSP...65.3551S |s2cid=16321768 |issn=1053-587X}} Many tensor decompositions generalize some matrix decompositions.{{Cite journal|date=2013-05-01|title=General tensor decomposition, moment matrices and applications|url=https://www.sciencedirect.com/science/article/pii/S0747717112001290|journal=Journal of Symbolic Computation|language=en|volume=52|pages=51–71|doi=10.1016/j.jsc.2012.05.012|issn=0747-7171|arxiv=1105.1229|last1=Bernardi |first1=A. |last2=Brachat |first2=J. |last3=Comon |first3=P. |last4=Mourrain |first4=B. |s2cid=14181289 }}
Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.{{Cite arXiv |last1=Rabanser |first1=Stephan |last2=Shchur |first2=Oleksandr |last3=Günnemann |first3=Stephan |date=2017 |title=Introduction to Tensor Decompositions and their Applications in Machine Learning |class=stat.ML |eprint=1711.10781}}
The main tensor decompositions are:
- Tensor rank decomposition;{{Cite book |last=Papalexakis |first=Evangelos E. |chapter=Automatic Unsupervised Tensor Mining with Quality Assessment |date=2016-06-30 |title=Proceedings of the 2016 SIAM International Conference on Data Mining |chapter-url=https://epubs.siam.org/doi/10.1137/1.9781611974348.80 |language=en |publisher=Society for Industrial and Applied Mathematics |pages=711–719 |doi=10.1137/1.9781611974348.80 |arxiv=1503.03355 |isbn=978-1-61197-434-8|s2cid=10147789 }}
- Higher-order singular value decomposition;{{Cite book|first1=M.A.O.|last1=Vasilescu
|first2=D.|last2=Terzopoulos
|url=http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|title=Multilinear Analysis of Image Ensembles: TensorFaces
|series=Lecture Notes in Computer Science; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark)
|publisher=Springer, Berlin, Heidelberg
|volume=2350
|doi=10.1007/3-540-47969-4_30
|isbn=978-3-540-43745-1
|year=2002
}}
- Tucker decomposition;
- matrix product states, and operators or tensor trains;
- Online Tensor Decompositions{{Cite book |last1=Gujral |first1=Ekta |last2=Pasricha |first2=Ravdeep |last3=Papalexakis |first3=Evangelos E. |editor-first1=Martin |editor-first2=Dino |editor-last1=Ester |editor-last2=Pedreschi |title=Proceedings of the 2018 SIAM International Conference on Data Mining|date=7 May 2018 |doi=10.1137/1.9781611975321|isbn=978-1-61197-532-1 |s2cid=21674935 |hdl=10536/DRO/DU:30109588 |hdl-access=free }}{{Cite book |last1=Gujral |first1=Ekta |last2=Papalexakis |first2=Evangelos E. |title=2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) |chapter=OnlineBTD: Streaming Algorithms to Track the Block Term Decomposition of Large Tensors |date=9 October 2020 |pages=168–177 |doi=10.1109/DSAA49011.2020.00029|isbn=978-1-7281-8206-3 |s2cid=227123356 }}{{Cite arXiv|last=Gujral |first=Ekta |date=2022 |title=Modeling and Mining Multi-Aspect Graphs With Scalable Streaming Tensor Decomposition |class=cs.SI |eprint=2210.04404}}
- hierarchical Tucker decomposition;{{cite conference |first1=M.A.O.|last1=Vasilescu|first2=E.|last2=Kim|date=2019|title=Compositional Hierarchical Tensor Factorization: Representing Hierarchical Intrinsic and Extrinsic Causal Factors|conference=In The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for Emerging Data Science Challenges |eprint=1911.04180 }}
- block term decomposition{{Cite journal |last=De Lathauwer|first=Lieven |title=Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness |url=http://epubs.siam.org/doi/10.1137/070690729 |journal=SIAM Journal on Matrix Analysis and Applications |year=2008 |volume=30 |issue=3 |pages=1033–1066 |language=en |doi=10.1137/070690729|url-access=subscription }}{{citation|first1=M.A.O.|last1=Vasilescu|first2=E.|last2=Kim|first3=X.S.|last3=Zeng|title=CausalX: Causal eXplanations and Block Multilinear Factor Analysis |work=Conference Proc. of the 2020 25th International Conference on Pattern Recognition (ICPR 2020)|year=2021 |pages=10736–10743 |doi=10.1109/ICPR48806.2021.9412780 |arxiv=2102.12853 |isbn=978-1-7281-8808-9 |s2cid=232046205 }}{{cite book |last1=Gujral |first1=Ekta |last2=Pasricha |first2=Ravdeep |last3=Papalexakis |first3=Evangelos |title=Proceedings of the Web Conference 2020 |chapter=Beyond Rank-1: Discovering Rich Community Structure in Multi-Aspect Graphs |date=2020-04-20 |chapter-url=https://dl.acm.org/doi/10.1145/3366423.3380129 |language=en |location=Taipei Taiwan |publisher=ACM |pages=452–462 |doi=10.1145/3366423.3380129 |isbn=978-1-4503-7023-3|s2cid=212745714 }}
Notation
This section introduces basic notations and operations that are widely used in the field.
class="wikitable"
|+ Table of symbols and their description. | |
Symbols | Definition |
---|---|
scalar, vector, row, matrix, tensor | |
vectorizing either a matrix or a tensor | |
matrixized tensor | |
mode-m product |
Introduction
A multi-way graph with K perspectives is a collection of K matrices with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index the tensor.