tetragonal crystal system
{{short description|Lattice point group}}
{{refimprove|date=July 2011}}
{{redirect|Tetragonal|other uses|tetragon}}
File:TP30-CrFe crystalmaker.pdf) that show its different side lengths, making this structure a member of the tetragonal crystal system.]]
In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).
Bravais lattices
{{further|Bravais lattice}}
There are two tetragonal Bravais lattices: the primitive tetragonal and the body-centered tetragonal.
class=wikitable
! Bravais lattice ! Primitive ! Body-centered |
align=center
| tP | tI |
Unit cell |
---|
The body-centered tetragonal lattice is equivalent to the primitive tetragonal lattice with a smaller unit cell, while the face-centered tetragonal lattice is equivalent to the body-centered tetragonal lattice with a smaller unit cell.[http://www.aem.umn.edu/people/faculty/shield/hane/tet.html Cubic-to-Tetragonal Transition]
Crystal classes
{{further|Crystallographic point group}}
The point groups that fall under this crystal system are listed below, followed by their representations in international notation, Schoenflies notation, orbifold notation, Coxeter notation and mineral examples.[http://webmineral.com/crystal/Tetragonal.shtml Webmineral data]Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., pp. 73–78, {{isbn|0-471-80580-7}}
class="wikitable"
! rowspan=2 width=60|# ! colspan=5| Point group ! rowspan=2| Type ! rowspan=2| Example ! colspan=2| Space groups |
Name{{cite web |title=The 32 crystal classes |url=https://www.tulane.edu/~sanelson/eens211/32crystalclass.htm |access-date=2018-06-19}}
! Intl ! Schoen. ! Orb. ! Cox. ! Primitive ! Body-centered |
---|
align=center
! 75–80 | Tetragonal pyramidal | 4 | C4 | 44 | [4]+ | align=left| P4, P41, P42, P43 | I4, I41 |
align=center
! 81–82 | Tetragonal disphenoidal | {{overline|4}} | S4 | 2× | [2+,4+] | | align=left| P{{overline|4}} | I{{overline|4}} |
align=center
! 83–88 | Tetragonal dipyramidal | 4/m | C4h | 4* | [2,4+] | scheelite, wulfenite, leucite | align=left| P4/m, P42/m, P4/n, P42/n | I4/m, I41/a |
align=center
! 89–98 | Tetragonal trapezohedral | 422 | D4 | 224 | [2,4]+ | align=left| P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212 | I422, I4122 |
align=center
! 99–110 | Ditetragonal pyramidal | 4mm | C4v | *44 | [4] | polar | align=left| P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc | I4mm, I4cm, I41md, I41cd |
align=center
! 111–122 | Tetragonal scalenohedral | {{overline|4}}2m | D2d (Vd) | 2*2 | [2+,4] | | align=left| P{{overline|4}}2m, P{{overline|4}}2c, P{{overline|4}}21m, P{{overline|4}}21c, P{{overline|4}}m2, P{{overline|4}}c2, P{{overline|4}}b2, P{{overline|4}}n2 | I{{overline|4}}m2, I{{overline|4}}c2, I{{overline|4}}2m, I{{overline|4}}2d |
align=center
! 123–142 | Ditetragonal dipyramidal | 4/mmm | D4h | *224 | [2,4] | rutile, pyrolusite, zircon | align=left| P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm, P42/mbc, P42/mnm, P42/nmc, P42/ncm | I4/mmm, I4/mcm, I41/amd, I41/acd |
In two dimensions
{{main|Square lattice}}
There is only one tetragonal Bravais lattice in two dimensions: the square lattice.
class=wikitable
! Bravais lattice ! Square |
align=center
| tp |
Unit cell |
---|
See also
References
{{Reflist}}
External links
- {{Commonscatinline|Tetragonal lattices}}
{{Crystal systems}}
{{Authority control}}