tetragonal crystal system

{{short description|Lattice point group}}

{{refimprove|date=July 2011}}

{{redirect|Tetragonal|other uses|tetragon}}

File:WulfeniteUSGOV.jpg]]

File:TP30-CrFe crystalmaker.pdf) that show its different side lengths, making this structure a member of the tetragonal crystal system.]]

In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square base (a by a) and height (c, which is different from a).

Bravais lattices

{{further|Bravais lattice}}

There are two tetragonal Bravais lattices: the primitive tetragonal and the body-centered tetragonal.

class=wikitable

! Bravais lattice

! Primitive
tetragonal

! Body-centered
tetragonal

align=center

! Pearson symbol

| tP

| tI

Unit cell

| File:Tetragonal.svg

| File:Body-centered tetragonal.svg

The body-centered tetragonal lattice is equivalent to the primitive tetragonal lattice with a smaller unit cell, while the face-centered tetragonal lattice is equivalent to the body-centered tetragonal lattice with a smaller unit cell.[http://www.aem.umn.edu/people/faculty/shield/hane/tet.html Cubic-to-Tetragonal Transition]

Crystal classes

{{further|Crystallographic point group}}

The point groups that fall under this crystal system are listed below, followed by their representations in international notation, Schoenflies notation, orbifold notation, Coxeter notation and mineral examples.[http://webmineral.com/crystal/Tetragonal.shtml Webmineral data]Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., pp. 73–78, {{isbn|0-471-80580-7}}

class="wikitable"

! rowspan=2 width=60|#

! colspan=5| Point group

! rowspan=2| Type

! rowspan=2| Example

! colspan=2| Space groups

Name{{cite web |title=The 32 crystal classes |url=https://www.tulane.edu/~sanelson/eens211/32crystalclass.htm |access-date=2018-06-19}}

! Intl

! Schoen.

! Orb.

! Cox.

! Primitive

! Body-centered

align=center

! 75–80

| Tetragonal pyramidal

| 4

| C4

| 44

| [4]+

| enantiomorphic polar

| pinnoite,
piypite

| align=left| P4, P41, P42, P43

| I4, I41

align=center

! 81–82

| Tetragonal disphenoidal

| {{overline|4}}

| S4

| 2×

| [2+,4+]

|

| cahnite, tugtupite

| align=left| P{{overline|4}}

| I{{overline|4}}

align=center

! 83–88

| Tetragonal dipyramidal

| 4/m

| C4h

| 4*

| [2,4+]

| centrosymmetric

| scheelite, wulfenite, leucite

| align=left| P4/m, P42/m, P4/n, P42/n

| I4/m, I41/a

align=center

! 89–98

| Tetragonal trapezohedral

| 422

| D4

| 224

| [2,4]+

| enantiomorphic

| cristobalite, wardite

| align=left| P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212

| I422, I4122

align=center

! 99–110

| Ditetragonal pyramidal

| 4mm

| C4v

| *44

| [4]

| polar

| diaboleite

| align=left| P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc

| I4mm, I4cm, I41md, I41cd

align=center

! 111–122

| Tetragonal scalenohedral

| {{overline|4}}2m

| D2d (Vd)

| 2*2

| [2+,4]

|

| chalcopyrite, stannite

| align=left| P{{overline|4}}2m, P{{overline|4}}2c, P{{overline|4}}21m, P{{overline|4}}21c, P{{overline|4}}m2, P{{overline|4}}c2, P{{overline|4}}b2, P{{overline|4}}n2

| I{{overline|4}}m2, I{{overline|4}}c2, I{{overline|4}}2m, I{{overline|4}}2d

align=center

! 123–142

| Ditetragonal dipyramidal

| 4/mmm

| D4h

| *224

| [2,4]

| centrosymmetric

| rutile, pyrolusite, zircon

| align=left| P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm, P42/mbc, P42/mnm, P42/nmc, P42/ncm

| I4/mmm, I4/mcm, I41/amd, I41/acd

In two dimensions

{{main|Square lattice}}

There is only one tetragonal Bravais lattice in two dimensions: the square lattice.

class=wikitable

! Bravais lattice

! Square

align=center

! Pearson symbol

| tp

Unit cell

| File:2d tp.svg

See also

References

{{Reflist}}