tetrahedroid
{{short description|Irreducible nodal surface with properties similar to that of a tetrahedron}}
In algebraic geometry, a tetrahedroid (or tétraédroïde) is a special kind of Kummer surface studied by {{harvs|txt|last=Cayley|year=1846|authorlink=Arthur Cayley}}, with the property that the intersections with the faces of a fixed tetrahedron are given by two conics intersecting in four nodes. Tetrahedroids generalize Fresnel's wave surface.
References
- {{Citation | last1=Cayley | first1=Arthur | author1-link=Arthur Cayley | title=Sur la surface des ondes | id=Collected papers vol 1 pages 302–305 | year=1846 | journal=Journal de Mathématiques Pures et Appliquées | volume=11 | pages=291–296}}
- {{Citation | authorlink=R. W. H. T. Hudson | last1=Hudson | first1=R. W. H. T. | title=Kummer's quartic surface | publisher=Cambridge University Press | series=Cambridge Mathematical Library | isbn=978-0-521-39790-2 |mr=1097176 | year=1990|orig-year=First published 1905}}
{{algebraic-geometry-stub}}