thermal diffusivity

{{Short description|Rate at which heat spreads throughout a material}}

In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure.{{CRC90|page=2-65}} It is a measure of the rate of heat transfer inside a material and has SI units of m2/s. It is an intensive property. Thermal diffusivity is usually denoted by lowercase alpha ({{mvar|α}}), but {{mvar|a}}, {{mvar|h}}, {{mvar|κ}} (kappa),{{cite book |last1=Hetnarski |first1=Richard B. |last2=Eslami |first2=M. Reza |title=Thermal Stresses – Advanced Theory and Applications |year=2009 |publisher=Springer Netherlands |location=Dordrecht |isbn=978-1-4020-9247-3 |pages=170 |edition=Online-Ausg. |doi=10.1007/978-3-030-10436-8}} {{mvar|K}},{{cite journal |last1=Unsworth |first1=J. |last2=Duarte |first2=From. J. |author2-link=F. J. Duarte |title=Heat diffusion in a solid sphere and Fourier Theory |journal=Am. J. Phys. |pages=891–893 |doi=10.1119/1.11601 |volume=47 |bibcode=1979AmJPh..47..981U |issue=11 |year=1979}} {{mvar|D}}, D_T are also used.

The formula is{{cite book |first1=R. Byron |last1=Bird |first2=Warren E. |last2=Stewart |first3=Edwin N. |last3=Lightfoot |title=Transport Phenomena |publisher=John Wiley and Sons, Inc. |year=1960 |isbn=978-0-471-07392-5 |at=Eq. 8.1-7 |url-access=registration |url=https://archive.org/details/transportphenome00bird}}

\alpha = \frac{k}{\rho c_p},

where

: {{mvar|k}} is thermal conductivity (W/(m·K)),

: {{mvar|c{{sub|p}}}} is specific heat capacity (J/(kg·K)),

: {{mvar|ρ}} is density (kg/m3).

Together, {{mvar|ρc{{sub|p}}}} can be considered the volumetric heat capacity (J/(m3·K)).

Thermal diffusivity is a positive coefficient in the heat equation:{{cite book |last1=Carslaw |first1=H. S. |author1-link=Horatio Scott Carslaw |last2=Jaeger |first2=J. C. |author2-link=John Conrad Jaeger |year=1959 |title=Conduction of Heat in Solids |edition=2nd |publisher=Oxford University Press |isbn=978-0-19-853368-9}}

\frac{\partial T}{\partial t} = \alpha \nabla^2 T.

One way to view thermal diffusivity is as the ratio of the time derivative of temperature to its curvature, quantifying the rate at which temperature concavity is "smoothed out". In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its energy storage capacity or "thermal bulk".

Thermal diffusivity and thermal effusivity are related concepts and quantities used to simulate non-equilibrium thermodynamics. Diffusivity is the more fundamental concept and describes the stochastic process of heat spread throughout some local volume of a substance. Effusivity describes the corresponding transient process of heat flow through some local area of interest. Upon reaching a steady state, where the stored energy distribution stabilizes, the thermal conductivity ({{mvar|k}}) may be sufficient to describe heat transfers inside solid or rigid bodies by applying Fourier's law.{{cite book |last=Dante |first=Roberto C. |title=Handbook of Friction Materials and Their Applications |year=2016 |publisher=Elsevier |doi=10.1016/B978-0-08-100619-1.00009-2 |pages=123–134}}{{cite book |last=Venkanna |first=B. K. |title=Fundamentals of Heat and Mass Transfer |url=https://books.google.com/books?id=IIIVHRirRgEC&pg=PA38 |access-date=1 December 2011 |year=2010 |publisher=PHI Learning |location=New Delhi |isbn=978-81-203-4031-2 |page=38}}

Thermal diffusivity is often measured with the flash method.{{Cite web |url=http://www.netzsch.com/en/home/ |title=NETZSCH-Gerätebau, Germany |access-date=2012-03-12 |archive-url=https://web.archive.org/web/20120311084633/http://www.netzsch.com/en/home/ |archive-date=2012-03-11 |url-status=dead }}

{{cite journal

|author1=W. J. Parker |author2=R. J. Jenkins |author3=C. P. Butler |author4=G. L. Abbott

|title=Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity

|journal=Journal of Applied Physics

|volume=32 |issue=9 |page=1679

|year=1961

|doi=10.1063/1.1728417

|bibcode=1961JAP....32.1679P }} It involves heating a strip or cylindrical sample with a short energy pulse at one end and analyzing the temperature change (reduction in amplitude and phase shift of the pulse) a short distance away.

{{cite journal

|author1=J. Blumm |author2=J. Opfermann

|title= Improvement of the mathematical modeling of flash measurements

|journal=High Temperatures – High Pressures

|volume=34 |issue=5 |page=515

|year=2002

|doi=10.1068/htjr061

}}{{cite conference |last=Thermitus |first=M.-A. |editor=Gaal, Daniela S. |editor2=Gaal, Peter S. |title=New Beam Size Correction for Thermal Diffusivity Measurement with the Flash Method |conference=30th International Thermal Conductivity Conference/18th International Thermal Expansion Symposium |conference-url=https://web.archive.org/web/20100128105338/http://www.thermalconductivity.org/ |book-title=Thermal Conductivity 30/Thermal Expansion 18 |url=https://books.google.com/books?id=F9row3bxLuYC&pg=PA217 |access-date=1 December 2011 |date=October 2010 |publisher=DEStech Publications |location=Lancaster, PA |isbn=978-1-60595-015-0 |page=217}}

Thermal diffusivity of selected materials and substances

class="wikitable sortable"

|+Thermal diffusivity of selected materials and substances{{cite book| title=Introduction to Heat Transfer|edition= 3rd|publisher=McGraw-Hill| year=1958| last1=Brown |last2= Marco}} and {{cite book| last1=Eckert |last2=Drake| title=Heat and Mass Transfer| publisher=McGraw-Hill| year=1959| isbn=978-0-89116-553-8}} cited in {{cite book| first=J.P. |last=Holman| title=Heat Transfer| edition=9th| publisher=McGraw-Hill|year= 2002| isbn=978-0-07-029639-8}}

! Material !!Thermal diffusivity
(mm2/s)!!Refs.

Pyrolytic graphite, parallel to layers1220
Diamond1060–1160
Carbon/carbon composite at 25 °C

|216.5

|

Helium (300 K, 1 atm)

|190

|{{cite book|title=CDC Handbook of Chemistry and Physics|publisher=Chemical Rubber Publishing Company|year=1992|editor-last=Lide|editor-first=David R.|edition=71st|location=Boston}} cited in {{cite book|last=Baierlein|first=Ralph|url=https://archive.org/details/thermalphysics00ralp|title=Thermal Physics|publisher=Cambridge University Press|year=1999|isbn=978-0-521-59082-2|location=Cambridge, UK|page=[https://archive.org/details/thermalphysics00ralp/page/372 372]|access-date=1 December 2011|url-access=registration}}

Silver, pure (99.9%)165.63
Hydrogen (300 K, 1 atm)

|160

|

Gold127{{cite journal|url=http://www.electronics-cooling.com/2007/08/thermal-diffusivity/|title=Materials Data|author=Jim Wilson|journal=Electronics Cooling|date=August 2007}}
Copper at 25 °C111{{cite journal|title= Measurement of thermal properties of a ceramic/metal joint by laser flash method |journal= Journal of Nuclear Materials |volume=407 |issue=2|page=83 |author1=V. Casalegno |author2=P. Vavassori |author3=M. Valle |author4=M. Ferraris |author5=M. Salvo |author6=G. Pintsuk | year= 2010 |doi=10.1016/j.jnucmat.2010.09.032|bibcode = 2010JNuM..407...83C }}
Aluminium97
Silicon

|88

|

Al-10Si-Mn-Mg (Silafont 36) at 20 °C74.2{{cite journal |author1=P. Hofer |author2=E. Kaschnitz | title= Thermal diffusivity of the aluminium alloy Al-10Si-Mn-Mg (Silafont 36) in the solid and liquid states |journal= High Temperatures – High Pressures | volume=40 |issue=3–4 |page=311 | year= 2011|url= http://www.oldcitypublishing.com/HTHP/HTHPcontents/HTHP40.3-4contents.html }}
Aluminium 6061-T6 Alloy64
Molybdenum (99.95%) at 25 °C54.3{{cite conference|conference=17th Plansee Seminar |title= Measurement of the Thermophysical Properties of Pure Molybdenum |author1=A. Lindemann |author2=J. Blumm | year= 2009 |volume=3 }}
Al-5Mg-2Si-Mn (Magsimal-59) at 20 °C44.0{{cite journal |author1=E. Kaschnitz |author2=M. Küblböck |title=Thermal diffusivity of the aluminium alloy Al-5Mg-2Si-Mn (Magsimal-59) in the solid and liquid states|journal=High Temperatures – High Pressures |volume= 37 |issue=3 |page= 221 | year= 2008 |url= http://www.oldcitypublishing.com/HTHP/HTHPcontents/HTHP37.3contents.html }}
Tin

|40

|

Water vapor (1 atm, 400 K)

|23.38

|

Iron23
Argon (300 K, 1 atm)

|22

|

Nitrogen (300 K, 1 atm)

|22

|

Air (300 K)

|19

|

Steel, AISI 1010 (0.1% carbon)18.8{{cite book|last=Lienhard|first=John H. Lienhard, John H. |title=A Heat Transfer Textbook|year=2019|publisher=Dover Pub|page= 715|edition=5th}}
Aluminium oxide (polycrystalline)

|12.0

|

Steel, 1% carbon11.72
Si3N4 with CNTs 26 °C

|9.142

|{{cite journal|author1=O. Koszor|author2=A. Lindemann|author3=F. Davin|author4=C. Balázsi|year=2009|title=Observation of thermophysical and tribological properties of CNT reinforced Si3 N4|journal=Key Engineering Materials|volume=409|page=354|doi=10.4028/www.scientific.net/KEM.409.354|s2cid=136957396}}

Si3N4 without CNTs 26 °C

|8.605

|

Steel, stainless 304A at 27 °C4.2
Pyrolytic graphite, normal to layers

|3.6

|

Steel, stainless 310 at 25 °C3.352{{cite journal |author1=J. Blumm |author2=A. Lindemann |author3=B. Niedrig |author4=R. Campbell |title=Measurement of Selected Thermophysical Properties of the NPL Certified Reference Material Stainless Steel 310 |journal=International Journal of Thermophysics |volume=28 |page=674 |year=2007 |doi= 10.1007/s10765-007-0177-z |issue=2 |bibcode = 2007IJT....28..674B |s2cid=120628607 }}
Inconel 600 at 25 °C3.428{{cite journal |author1=J. Blumm |author2=A. Lindemann |author3=B. Niedrig |title= Measurement of the thermophysical properties of an NPL thermal conductivity standard Inconel 600|journal= High Temperatures – High Pressures |volume=35/36 |issue=6 |page=621 | year= 2003–2007 |url=http://www.perceptionweb.com/abstract.cgi?id=htjr145 |doi=10.1068/htjr145}}
Quartz1.4
Sandstone

|1.15

|

Ice at 0 °C

|1.02

|

Silicon dioxide (polycrystalline)0.83
Brick, common

|0.52

|

Glass, window

|0.34

|

Brick, adobe

|0.27

|

PC (polycarbonate) at 25 °C0.144{{cite journal |author1=J. Blumm |author2=A. Lindemann |title= Characterization of the thermophysical properties of molten polymers and liquids using the flash technique |journal=High Temperatures – High Pressures |volume= 35/36 |issue=6 |page= 627 | year= 2003–2007 |doi=10.1068/htjr144 |url=http://www.eyoungindustry.com/uploadfile/file/20151027/20151027211034_96662.pdf}}
Water at 25 °C

|0.143

|

PTFE (Polytetrafluorethylene) at 25 °C

|0.124

|{{cite journal|author1=J. Blumm|author2=A. Lindemann|author3=M. Meyer|author4=C. Strasser|year=2011|title=Characterization of PTFE Using Advanced Thermal Analysis Technique|journal=International Journal of Thermophysics|volume=40|issue=3–4|page=311|bibcode=2010IJT....31.1919B|doi=10.1007/s10765-008-0512-z|s2cid=122020437}}

PP (polypropylene) at 25 °C0.096
Nylon

|0.09

|

Rubber

|0.089–0.13

|

Wood (yellow pine)

|0.082

|

Paraffin at 25 °C0.081
PVC (polyvinyl chloride)0.08
Oil, engine (saturated liquid, 100 °C)0.0738
Alcohol0.07

See also

References

{{Reflist}}

{{Authority control}}

{{DEFAULTSORT:Thermal Diffusivity}}

Category:Thermodynamic properties

Category:Heat transfer

Category:Physical quantities

Category:Heat conduction