titanocene dichloride

{{chembox

| Verifiedfields = changed

| Watchedfields = changed

| verifiedrevid = 439751940

| ImageFile = Cp2TiCl2.png

| ImageSize = 150px

| ImageName = Titanocene dichloride

| ImageFile1 = Titanocene-dichloride-3D-balls.png

| ImageSize1 = 150px

| ImageName1 = Ball-and-stick model of titanocene dichloride

| ImageFile2 = Cp2TiCl2Sample.jpg

| ImageSize2 = 150px

| ImageName2 = Sample of titanocene dichloride

| IUPACName = Dichloridobis(η5-cyclopentadienyl)titanium

| OtherNames = titanocene dichloride, dichlorobis(cyclopentadienyl)titanium(IV)

|Section1={{Chembox Identifiers

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 1271-19-8

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 34981141

| EC_number = 215-035-9

| PubChem = 5284468

| RTECS = XR2050000

| UNNumber = 3261

| UNII_Ref = {{fdacite|correct|FDA}}

| UNII = MJE0547U1U

| InChI = 1/2C5H5.2ClH.Ti/c2*1-2-4-5-3-1;;;/h2*1-5H;2*1H;/q2*-1;;;+4/p-2/r2C5H5.Cl2Ti/c2*1-2-4-5-3-1;1-3-2/h2*1-5H;/q2*-1;+2

| InChIKey = YMNCCEXICREQQV-JUFMQDBHAK

| StdInChI_Ref = {{stdinchicite|changed|chemspider}}

| StdInChI = 1S/2C5H5.2ClH.Ti/c2*1-2-4-5-3-1;;;/h2*1-5H;2*1H;/q2*-1;;;+4/p-2

| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}

| StdInChIKey = YMNCCEXICREQQV-UHFFFAOYSA-L

| SMILES = [cH-]1cccc1.[cH-]1cccc1.Cl[Ti+2]Cl

}}

|Section2={{Chembox Properties

| Formula = C10H10Cl2Ti

| MolarMass = 248.96 g/mol

| Appearance = bright red solid

| Density = 1.60 g/cm3, solid

| Solubility = sl. sol. with hydrolysis

| MeltingPtC = 289

| MeltingPt_notes =

}}

|Section3={{Chembox Structure

| Coordination = Dist. tetrahedral

| CrystalStruct = Triclinic

| Dipole =

}}

|Section7={{Chembox Hazards

| ExternalSDS =

| NFPA-H = 2

| NFPA-F =

| NFPA-R = 1

| Hazards_ref={{cite web |title=Summary of Classification and Labelling |url=https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/41331 |access-date=5 December 2021}}

| GHSPictograms = {{GHS07}}

| GHSSignalWord = Warning

| HPhrases = {{H-phrases|315|335}}

| PPhrases = {{P-phrases|201|202|261|264|270|271|280|281|301+310|301+312|302+352|304+340|305+351+338|308+313|312|330|332+313|337+313|362|403+233|405|501}}

}}

|Section8={{Chembox Related

| OtherCompounds = Ferrocene
Zirconocene dichloride
Hafnocene dichloride
Vanadocene dichloride
Niobocene dichloride
Tantalocene dichloride
Molybdocene dichloride
Tungstenocene dichloride
TiCl4}}

}}

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air.{{cite book | editor-first=S. |editor-last=Budaver | title=The Merck Index |edition=11th |publisher=Merck & Co., Inc. | year=1989 }} It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Preparation and structure

The standard preparations of Cp2TiCl2 start with titanium tetrachloride. The original synthesis by Wilkinson and Birmingham, using sodium cyclopentadienide,{{cite journal | author1-link=Geoffrey Wilkinson |first1= G.|last1= Wilkinson |first2=J.G. |last2=Birmingham | title = Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta | journal = J. Am. Chem. Soc. | volume = 76 | issue = 17 | year = 1954 | pages = 4281–4284 | doi = 10.1021/ja01646a008}} is still commonly used:{{cite journal |title=Cp2TiCl2: Synthesis, Characterization, Modeling and Catalysis|author1=Sara E. Johnson |author2=Taylor A. Bell |author3=Joseph K. West|journal=Journal of Chemical Education|year=2022|volume=99|number=5|pages=2121–2128|doi=10.1021/acs.jchemed.1c01272|bibcode=2022JChEd..99.2121J |s2cid=248287682 }}

:2 NaC5H5 + TiCl4 → (C5H5)2TiCl2 + 2 NaCl

It can also be prepared by using freshly distilled cyclopentadiene rather than its sodium derivative:{{cite journal | first = J. M. | last = Birmingham | title = Synthesis of Cyclopentadienyl Metal Compounds | journal = Adv. Organometal. Chem. | volume = 2 | year = 1965 | pages = 365–413 | doi = 10.1016/S0065-3055(08)60082-9| series = Advances in Organometallic Chemistry | isbn = 9780120311026 }}

:2 C5H6 + TiCl4 → (C5H5)2TiCl2 + 2 HCl

Focusing on the geometry of the Ti center, Cp2TiCl2 adopts a distorted tetrahedral geometry (counting Cp as a monodentate ligand). The Ti-Cl distance is 2.37 Å and the Cl-Ti-Cl angle is 95°.{{cite journal | last1=Clearfield|first1=Abraham | title=Structural Studies of (π-C5H5)2MX2 Complexes and their Derivatives. The Structure of Bis(π-cyclopentadienyl)titanium Dichloride | journal=Can. J. Chem. | volume=53 | year=1975 | issue=11 | pages=1621–1629 | doi=10.1139/v75-228 | last2=Warner | first2=David Keith | last3=Saldarriaga Molina | first3=Carlos Hermán | last4=Ropal | first4=Ramanathan | last5=Bernal | first5=Ivan|display-authors=etal}}

Reactions

=Halide replacement reactions=

Cp2TiCl2 serves as a source of Cp2Ti2+. A large range of nucleophiles will displace chloride. With NaSH and with polysulfide salts, one obtains the sulfido derivatives Cp2Ti(SH)2 and Cp2TiS5.{{cite book|first1=Alan |last1=Shaver |first2=James M. |last2=McCall |first3=Gabriela |last3=Marmolejo |title=Cyclometallapolysulfanes (and Selanes) of Bis(η5-Cyclopentadienyl) Titanium(IV), Zirconium(IV), Molybdenum(IV), and Tungsten(IV)|chapter=Cyclometallapolysulfanes (And Selanes) of Bis(η5-Cyclopentadienyl) Titanium(IV), Zirconium(IV), Molybdenum(IV), and Tungsten(IV) |series=Inorganic Syntheses |date=1990 |volume=27 |pages=59–65 |doi=10.1002/9780470132586.ch11|isbn=9780470132586 }}

The Petasis reagent, Cp2Ti(CH3)2, is prepared from the action of methylmagnesium chloride{{OrgSynth | last1= Payack |first1=J. F. |last2=Hughes |first2=D. L.|last3=Cai |first3=D. |last4=Cottrell |first4=I. F. |last5=Verhoeven |first5=T. R. | prep = v79p0019 | volume = 79 | pages = 19 | year = 2002 | title = Dimethyltitanocene}} or methyllithium{{cite journal | last1= Claus |first1=K. |last2=Bestian |first2=H. | journal = Justus Liebigs Ann. Chem. | year = 1962 | volume = 654 | pages = 8–19 | doi = 10.1002/jlac.19626540103 | title = Über die Einwirkung von Wasserstoff auf einige metallorganische Verbindungen und Komplexe}} on Cp2TiCl2. This reagent is useful for the conversion of esters into vinyl ethers.

The Tebbe reagent Cp2TiCl(CH2)Al(CH3)2, arises by the action of 2 equivalents Al(CH3)3 on Cp2TiCl2.{{cite journal | last1 = Herrmann | first1 = W.A. | year = 1982 | title = The Methylene Bridge | journal = Adv. Organomet. Chem. | volume = 20 | pages = 159–263 | doi=10.1016/s0065-3055(08)60522-5| series = Advances in Organometallic Chemistry | isbn = 9780120311200 }}{{cite encyclopedia|last=Straus |first=D. A.|title=μ-Chlorobis(cyclopentadienyl)(dimethylaluminium)-μ-methylenetitanium |encyclopedia=Encyclopedia of Reagents for Organic Synthesis |publisher=John Wiley |location=London |date=2000}}

=Reactions affecting Cp ligands=

One Cp ligand can be removed from Cp2TiCl2 to give tetrahedral CpTiCl3. This conversion can be effected with TiCl4 or by reaction with SOCl2.{{cite journal|last1 = Chandra|first1 = K.|last2 = Sharma|first2 = R. K.|last3 = Kumar|first3 = N.|last4 = Garg|first4 = B. S.|title = Preparation of η5-Cyclopentadienyltitanium Trichloride and η5-Methylcyclopentadienyltitanium Trichloride|journal = Chem. Ind. - London|year = 1980|volume = 44|pages = 288–289}}

The sandwich complex (Cycloheptatrienyl)(cyclopentadienyl)titanium is prepared by treatment of titanocene dichloride with lithium cycloheptatrienyl.{{cite journal |doi=10.1002/anie.202009634|title=Exploring the Organometallic Route to Molecular Spin Qubits: The [Cp Ti(cot)] Case|year=2021|last1=Camargo|first1=Luana C.|last2=Briganti|first2=Matteo|last3=Santana|first3=Francielli S.|last4=Stinghen|first4=Danilo|last5=Ribeiro|first5=Ronny R.|last6=Nunes|first6=Giovana G.|last7=Soares|first7=Jaísa F.|last8=Salvadori|first8=Enrico|last9=Chiesa|first9=Mario|last10=Benci|first10=Stefano|last11=Torre|first11=Renato|last12=Sorace|first12=Lorenzo|last13=Totti|first13=Federico|last14=Sessoli|first14=Roberta|journal=Angewandte Chemie International Edition|volume=60|issue=5|pages=2588–2593|pmid=33051985|hdl=2318/1765157|s2cid=222351619|url=https://zenodo.org/record/4926051 |hdl-access=free}}

Titanocene itself, TiCp2, is so highly reactive that it rearranges into a TiIII hydride dimer and has been the subject of much investigation.{{cite book|title = Organometallic Chemistry of Titanium, Zirconium, and Hafnium|pages = 229–237|chapter = Titanocene|first1 = P. C.|last1 = Wailes|first2 = R. S. P.|last2 = Coutts|first3 = H.|last3 = Weigold|publisher = Academic Press|year = 1974|chapter-url = https://books.google.com/books?id=wIlsA73iqpEC&pg=PA229|isbn = 9780323156479}}{{cite book|title = Organometallic Chemistry: A Unified Approach|first1 = R. C.|last1 = Mehrotra|first2 = A.|last2 = Singh|edition = 2nd|publisher = New Age International Publishers|location = New Delhi|year = 2000|chapter = 4.3.6 η5-Cyclopentadienyl d-Block Metal Complexes|pages = 243–268|chapter-url = https://books.google.com/books?id=NSQy3mFKRM8C&pg=PA258|isbn = 9788122412581}} This dimer can be trapped by conducting the reduction of titanocene dichloride in the presence of ligands; in the presence of benzene, a fulvalene complex, {{nowrap|μ(η55-fulvalene)-di-(μ-hydrido)-bis(η5-cyclopentadienyltitanium),}} can be prepared and the resulting solvate structurally characterised by X-ray crystallography.{{cite journal|first1 = Sergei I.|last1 = Troyanov|first2 = Helena|last2 = Antropiusová|first3 = Karel|last3 = Mach|journal = J. Organomet. Chem.|title = Direct proof of the molecular structure of dimeric titanocene; The X-ray structure of μ(η55-fulvalene)-di-(μ-hydrido)-bis(η5-cyclopentadienyltitanium)·1.5 benzene|volume = 427|issue = 1|year = 1992|pages = 49–55|doi = 10.1016/0022-328X(92)83204-U}} The same compound had been reported earlier by a lithium aluminium hydride reduction{{cite journal|title = Preparation of μ-(η55-Fulvalene)-di-μ-hydrido-bis(η5-cyclopentadienyltitanium) by the reduction of Cp2TiCl2 with LiAlH4 in aromatic solvents|first1 = Helena|last1 = Antropiusová|first2 = Alena|last2 = Dosedlová|first3 = Vladimir|last3 = Hanuš|last4 = Karel|first4 = Mach|journal = Transition Met. Chem.|year = 1981|volume = 6|issue = 2|pages = 90–93|doi = 10.1007/BF00626113|s2cid = 101189483}} and sodium amalgam reduction{{cite journal|title = Chemistry of oxophilic transition metals. 2. Novel derivatives of titanocene and zirconocene|first1 = Tomas|last1 = Cuenca|first2 = Wolfgang A.|last2 = Herrmann|first3 = Terence V.|last3 = Ashworth|journal = Organometallics|year = 1986|volume = 5|issue = 12|pages = 2514–2517|doi = 10.1021/om00143a019}} of titanocene dichloride, and studied by 1H NMR{{cite journal|journal = J. Organomet. Chem.|volume = 290|issue = 3|year = 1985|pages = 301–305|title = 1H NMR Spectra and electronic structure of binuclear niobocene and titanocene containing fulvalene ligands|first1 = D. A.|last1 = Lemenovskii|first2 = I. F.|last2 = Urazowski|first3 = Yu K.|last3 = Grishin|first4 = V. A.|last4 = Roznyatovsky|doi = 10.1016/0022-328X(85)87293-4}} prior to its definitive characterisation.

File:GreenTitanoceneWeakM-M.png

=Redox=

Reduction with zinc gives the dimer of bis(cyclopentadienyl)titanium(III) chloride in a solvent-mediated chemical equilibrium:{{cite book|journal = Inorg. Synth.|first1 = L. E.|last1 = Manzer|first2 = E. A.|last2 = Mintz|first3 = T. J.|last3 = Marks| title=Inorganic Syntheses | chapter=18. Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III) |doi = 10.1002/9780470132524.ch18|volume = 21|year = 1982|pages = 84–86|isbn = 9780470132524}}{{cite journal|last1 = Nugent|first1 = William A.|last2 = RajanBabu|first2 = T. V.|title = Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins|journal = J. Am. Chem. Soc.|volume = 110|issue = 25|pages = 8561–8562|doi = 10.1021/ja00233a051|year = 1988}}

File:N-RB equilibrium.jpg

Cp2TiCl2 is a precursor to TiII derivatives.

Reductions have been investigated using Grignard reagent and alkyl lithium compounds. More conveniently handled reductants include Mg, Al, or Zn. The following syntheses demonstrate some of the compounds that can be generated by reduction of titanocene dichloride in the presence of π acceptor ligands:{{cite encyclopedia|first=Erik |last=Kuester |title=Bis(5-2,4-cyclopentadienyl)bis(trimethylphosphine)titanium |encyclopedia=Encyclopedia of Reagents for Organic Synthesis |date=2002 |publisher=John Wiley|doi=10.1002/047084289X.rn00022|chapter=Bis(η5-2,4-cyclopentadienyl)bis(trimethylphosphine)titanium |isbn=0471936235 }}

:Cp2TiCl2 + 2 CO + Mg → Cp2Ti(CO)2 + MgCl2

:Cp2TiCl2 + 2 PR3 + Mg → Cp2Ti(PR3)2 + MgCl2

Alkyne derivatives of titanocene have the formula (C5H5)2Ti(C2R2) and the corresponding benzyne complexes are known.{{cite journal | first1=S. L. |last1=Buchwald |first2=R. B. |last2=Nielsen | title=Group 4 Metal Complexes of Benzynes, Cycloalkynes, Acyclic Alkynes, and Alkenes | journal=Chem. Rev. | volume=88 | year=1988 | issue=7 | pages = 1047–1058 | doi = 10.1021/cr00089a004}} One family of derivatives are the titanocyclopentadienes.{{cite journal | first1 = Uwe | last1 = Rosenthal | first2 = Paul-Michael |last2 = Pellny | first3 = Frank G. | last3 = Kirchbauer | first4 = Vladimir V. | last4 = Burlakov | title = What Do Titano- and Zirconocenes Do with Diynes and Polyynes? | journal = Chem. Rev. | volume = 33 | year = 2000 | issue = 2 | pages = 119–129 | doi = 10.1021/ar9900109 | pmid = 10673320}} Rosenthal's reagent, Cp2Ti(η2-Me3SiC≡CSiMe3), can be prepared by this method. Two structures are shown, A and B, which are both resonance contributors to the actual structure of Rosenthal's reagent.{{Cite journal|last1 = Rosenthal|first1 = Uwe|last2 = Burlakov|first2 = Vladimir V.|last3 = Arndt|first3 = Perdita|last4 = Baumann|first4 = Wolfgang|last5 = Spannenberg|first5 = Anke|year = 2003|title = The Titanocene Complex of Bis(trimethylsilyl)acetylene: Synthesis, Structure, and Chemistry|journal = Organometallics|volume = 22|issue = 5|pages = 884–900|doi = 10.1021/om0208570}}

File:Synthesis of rosenthal reagent with titanocene.svg

Titanocene equivalents react with alkenyl alkynes followed by carbonylation and hydrolysis to form bicyclic cyclopentadienones, related to the Pauson–Khand reaction.{{cite journal | first=F. A. |last=Hicks| title=Scope of the Intramolecular Titanocene-Catalyzed Pauson-Khand Type Reaction | journal=J. Am. Chem. Soc. | volume=121 | year=1999 | issue=25 | pages=5881–5898 | doi = 10.1021/ja990682u|display-authors=etal}} A similar reaction is the reductive cyclization of enones to form the corresponding alcohol in a stereoselective manner.{{cite journal | first1= N. M. |last1=Kablaoui |first2=S. L. |last2=Buchwald | title = Development of a Method for the Reductive Cyclization of Enones by a Titanium Catalyst | journal = J. Am. Chem. Soc. | volume = 118 | year = 1998 | issue = 13 | pages = 3182–3191 | doi = 10.1021/ja954192n}}

Reduction of titanocene dichloride in the presence of conjugated dienes such as 1,3-butadiene gives η3-allyltitanium complexes.{{cite journal | first1= F. |last1=Sato | title = Synthesis of Organotitanium Complexes from Alkenes and Alkynes and Their Synthetic Applications | journal = Chem. Rev. | volume = 100 | issue = 8 | year = 2000 | pages = 2835–2886 | doi = 10.1021/cr990277l | last2 = Urabe | first2 = Hirokazu | last3 = Okamoto | first3 = Sentaro | pmid=11749307}} Related reactions occur with diynes. Furthermore, titanocene can catalyze C–C bond metathesis to form asymmetric diynes.

Titanocene dichloride as a photoredox catalyst to open epoxides in green light.{{Cite journal |last1=Zhang |first1=Zhenhua |last2=Hilche |first2=Tobias |last3=Slak |first3=Daniel |last4=Rietdijk |first4=Niels R. |last5=Oloyede |first5=Ugochinyere N. |last6=Flowers |first6=Robert A. |last7=Gansäuer |first7=Andreas |date=2020-06-08 |title=Titanocenes as Photoredox Catalysts Using Green-Light Irradiation |journal=Angewandte Chemie International Edition |language=en |volume=59 |issue=24 |pages=9355–9359 |doi=10.1002/anie.202001508 |issn=1433-7851 |pmc=7317808 |pmid=32216162}}

=Derivatives of (C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>TiCl<sub>2</sub>=

Many analogues of Cp2TiCl2 are known. Prominent examples are the ring-methylated derivatives (C5H4Me)2TiCl2 and (C5Me5)2TiCl2.

Medicinal research

Titanocene dichloride was investigated as an anticancer drug. In fact, it was both the first non-platinum coordination complex and the first metallocene to undergo a clinical trial.{{cite book|title = Bioinorganic Chemistry: A Short Course|first = R. M.|last = Roat-Malone|edition = 2nd|year = 2007|publisher = John Wiley & Sons|pages = 19–20|isbn = 978-0-471-76113-6|url = https://books.google.com/books?id=Ykx54y7LdK8C&q=molybdocene+dichloride&pg=PA20}}{{cite journal|doi=10.1039/C6CS00860G|pmid=28124046|author1=Cini, M.|author2=Bradshaw, T. D.|author3=Woodward, S.|title=Using titanium complexes to defeat cancer: the view from the shoulders of Titans|journal=Chem. Soc. Rev.|year=2017|volume=46|issue=4|pages=1040–1051|url=http://eprints.nottingham.ac.uk/40186/1/ChemSocRev-ForNottsEPrints.pdf|access-date=2019-07-13|archive-date=2018-07-19|archive-url=https://web.archive.org/web/20180719211541/http://eprints.nottingham.ac.uk/40186/1/ChemSocRev-ForNottsEPrints.pdf|url-status=dead}}

References

{{reflist|30em}}

Further reading

  • {{OrgSynth|prep=V79P0019|last1=Payack|first1= J. F.|last2= Hughes|first2= D. L.|last3= Cai|first3= D.|last4= Cottrell |first4=I. F.|last5= Verhoeven |first5=T. R. |title=Dimethyltitanocene Titanium, bis(η5-2,4-cyclopentadien-1-yl)dimethyl- |collvol=10 |collvolpage=355 |volume= 79 |page=19 |date=2002}}.
  • {{cite journal | first1= S.|last1= Gambarotta |first2=C. |last2=Floriani |first3=A. |last3=Chiesi-Villa |first4=C. |last4=Guastini | title = Cyclopentadienyldichlorotitanium(III): a free-radical-like reagent for reducing azo (N:N) multiple bonds in azo and diazo compounds | year = 1983 | journal = J. Am. Chem. Soc. | volume = 105 | issue = 25 | pages = 7295–7301 | doi = 10.1021/ja00363a015}}
  • {{cite journal | first= P. J.|last= Chirik | title = Group 4 Transition Metal Sandwich Complexes: Still Fresh after Almost 60 Years | year = 2010 | journal = Organometallics | volume = 29 | issue = 7 | pages = 1500–1517 | doi = 10.1021/om100016p}}

{{Titanium compounds}}

{{Cyclopentadiene complexes}}

{{DEFAULTSORT:Titanocene Dichloride}}

Category:Titanocenes

Category:Chloro complexes

Category:Titanium(IV) compounds