total set
{{About|a concept in functional analysis|the type of metric space|Complete space}}
In functional analysis, a total set (also called a complete set) in a vector space is a set of linear functionals with the property that if a vector satisfies for all then is the zero vector.{{cite book|last1=Klauder|first1=John R.|title=A Modern Approach to Functional Integration|url=https://archive.org/details/modernapproachto00jrkl|url-access=limited|date=2010|publisher=Springer Science & Business Media|isbn=9780817647902|page=[https://archive.org/details/modernapproachto00jrkl/page/n107 91]}}
In a more general setting, a subset of a topological vector space is a total set or fundamental set if the linear span of is dense in {{cite web|last1=Lomonosov|first1=L. I.|title=Total set|url=http://www.encyclopediaofmath.org/index.php?title=Total_set&oldid=14064|website=Encyclopedia of Mathematics|publisher=Springer|accessdate=14 September 2014}}
See also
- {{annotated link|Kadec norm}}
- {{annotated link|Degenerate bilinear form}}
- {{annotated link|Dual system}}
- {{annotated link|Topologies on spaces of linear maps}}
References
{{reflist|group=note}}
{{reflist}}
{{Duality and spaces of linear maps}}
{{Topological vector spaces}}
{{Functional analysis}}
{{linear-algebra-stub}}