total set

{{About|a concept in functional analysis|the type of metric space|Complete space}}

In functional analysis, a total set (also called a complete set) in a vector space is a set of linear functionals T with the property that if a vector x \in X satisfies f(x) = 0 for all f \in T, then x = 0 is the zero vector.{{cite book|last1=Klauder|first1=John R.|title=A Modern Approach to Functional Integration|url=https://archive.org/details/modernapproachto00jrkl|url-access=limited|date=2010|publisher=Springer Science & Business Media|isbn=9780817647902|page=[https://archive.org/details/modernapproachto00jrkl/page/n107 91]}}

In a more general setting, a subset T of a topological vector space X is a total set or fundamental set if the linear span of T is dense in X.{{cite web|last1=Lomonosov|first1=L. I.|title=Total set|url=http://www.encyclopediaofmath.org/index.php?title=Total_set&oldid=14064|website=Encyclopedia of Mathematics|publisher=Springer|accessdate=14 September 2014}}

See also

  • {{annotated link|Kadec norm}}
  • {{annotated link|Degenerate bilinear form}}
  • {{annotated link|Dual system}}
  • {{annotated link|Topologies on spaces of linear maps}}

References

{{reflist|group=note}}

{{reflist}}

{{Duality and spaces of linear maps}}

{{Topological vector spaces}}

{{Functional analysis}}

{{linear-algebra-stub}}

Category:Linear algebra

Category:Topological vector spaces