toxic shock syndrome
{{Short description|Medical condition caused by bacterial toxins}}
{{cs1 config|name-list-style=vanc}}
{{redirect|Toxic Shock|the 2018 book by Sharra L. Vostral|Toxic Shock: A Social History}}
{{Use dmy dates|date=March 2023}}
{{Infobox medical condition (new)
| name = Toxic shock syndrome
| image = PDB 1aw7 EBI.jpg
| caption = Toxic shock syndrome toxin-1 protein from staphylococcus
| field = Infectious disease
| symptoms = Fever, rash, skin peeling, low blood pressure
| complications = Shock, kidney failure
| duration =
| types = Staphylococcal (menstrual and nonmenstrual), streptococcal
| causes = Streptococcus pyogenes, Staphylococcus aureus, others
| risks = Very absorbent tampons, skin lesions in young children
| diagnosis = Based on symptoms
| differential = Septic shock, Kawasaki's disease, Stevens–Johnson syndrome, scarlet fever
| prevention =
| treatment = Antibiotics, incision and drainage of any abscesses, intravenous immunoglobulin
| medication =
| prognosis = Risk of death: ~50% (streptococcal), ~5% (staphylococcal)
| frequency = Staphylococcal: 0.3 to 0.5 cases per 100,000 population
Streptococcal: 2 to 4 cases per 100,000 population
| deaths =
}}
Toxic shock syndrome (TSS) is a condition caused by bacterial toxins.{{Cite journal |last=Low |first=Donald E. |date=July 2013 |title=Toxic Shock Syndrome: Major Advances in Pathogenesis, But Not Treatment |url=https://www.criticalcare.theclinics.com/article/S0749-0704(13)00029-8/abstract |journal=Critical Care Clinics |language=en |volume=29 |issue=3 |pages=651–675 |doi=10.1016/j.ccc.2013.03.012 |pmid=23830657 |via=Elsevier}} Symptoms may include fever, rash, skin peeling, and low blood pressure. There may also be symptoms related to the specific underlying infection such as mastitis, osteomyelitis, necrotising fasciitis, or pneumonia.
TSS is typically caused by bacteria of the Streptococcus pyogenes or Staphylococcus aureus type, though others may also be involved.{{Cite journal|last1=Gottlieb|first1=Michael|last2=Long|first2=Brit|last3=Koyfman|first3=Alex|date=June 2018|title=The Evaluation and Management of Toxic Shock Syndrome in the Emergency Department: A Review of the Literature|journal=The Journal of Emergency Medicine |volume=54|issue=6|pages=807–814|doi=10.1016/j.jemermed.2017.12.048|pmid=29366615|s2cid=1812988}} Streptococcal toxic shock syndrome is sometimes referred to as toxic-shock-like syndrome (TSLS). The underlying mechanism involves the production of superantigens during an invasive streptococcus infection or a localized staphylococcus infection. Risk factors for the staphylococcal type include the use of very absorbent tampons, skin lesions in young children characterized by fever, low blood pressure, rash, vomiting and/or diarrhea, and multiorgan failure.{{cite journal|last1=Khajuria|first1=A|last2=Nadam|first2=HH|last3=Gallagher|first3=M|last4=Jones|first4=I|last5=Atkins|first5=J|title=Pediatric Toxic Shock Syndrome After a 7% Burn: A Case Study and Systematic Literature Review|journal=Ann. Plast. Surg.|year=2020|volume=84|issue=1|pages=35–42|doi=10.1097/SAP.0000000000001990|pmid=31192868|s2cid=189815024}} Diagnosis is typically based on symptoms.
Treatment includes intravenous fluids, antibiotics, incision and drainage of any abscesses, and possibly intravenous immunoglobulin.{{Cite journal|last1=Wilkins|first1=Amanda L.|last2=Steer|first2=Andrew C.|last3=Smeesters|first3=Pierre R.|last4=Curtis|first4=Nigel|date=2017|title=Toxic shock syndrome – the seven Rs of management and treatment|journal=Journal of Infection|language=en|volume=74|pages=S147–S152|doi=10.1016/S0163-4453(17)30206-2|pmid=28646955}} The need for rapid removal of infected tissue via surgery in those with a streptococcal cause, while commonly recommended, is poorly supported by the evidence. Some recommend delaying surgical debridement. The overall risk of death is about 50% in streptococcal disease, and 5% in staphylococcal disease. Death may occur within 2 days.
In the United States, the incidence of menstrual staphylococcal TSS declined sharply in the 1990s, while both menstrual and nonmenstrual cases have stabilized at about 0.3 to 0.5 cases per 100,000 population. Streptococcal TSS (STSS) saw a significant rise in the mid-1980s and has since remained stable at 2 to 4 cases per 100,000 population. In the developing world, the number of cases is usually on the higher extreme. TSS was first described in 1927. It came to be associated with very absorbent tampons that were removed from sale soon after.
Signs and symptoms
Symptoms of toxic shock syndrome (TSS) vary depending on the underlying cause. TSS resulting from infection with the bacterium Staphylococcus aureus typically manifests in otherwise healthy individuals via signs and symptoms including high fever, accompanied by low blood pressure, malaise and confusion, which can rapidly progress to stupor, coma, and multiple organ failure. The characteristic rash, often seen early in the course of illness, resembles a sunburn (conversely, streptococcal TSS will rarely involve a sunburn-like rash), and can involve any region of the body including the lips, mouth, eyes, palms and soles of the feet. In patients who survive, the rash desquamates (peels off) after 10–21 days. The initial presentation of symptoms can be hard to differentiate from septic shock and other conditions such as Rocky Mountain spotted fever, rubeola, leptospirosis, drug toxicities, and viral exanthems.{{cite journal |last1=Burnham |first1=Jason |last2=Kollef |first2=Marin |title=Understanding toxic shock syndrome |journal=Intensive Care Medicine |date=May 2015 |volume=41 |issue=9 |pages=1707–1710 |doi=10.1007/s00134-015-3861-7|pmid=25971393 }}
STSS caused by the bacterium Streptococcus pyogenes, or TSLS, typically presents in people with pre-existing skin infections with the bacteria. These individuals often experience severe pain at the site of the skin infection, followed by rapid progression of symptoms as described above for TSS.{{Cite web |last=Bush |first=Larry Marc |date=March 2023 |title=Toxic Shock Syndrome |url=https://www.msdmanuals.com/en-sg/home/infections/bacterial-infections-gram-positive-bacteria/toxic-shock-syndrome |url-status=live |archive-url=https://web.archive.org/web/20240323061029/https://www.msdmanuals.com/en-sg/home/infections/bacterial-infections-gram-positive-bacteria/toxic-shock-syndrome |archive-date=2024-03-23 |access-date=2024-06-23 |website=The Merck Manuals}}
Pathophysiology
In both TSS (caused by S. aureus) and TSLS (caused by S. pyogenes), disease progression stems from a superantigen toxin. The toxin in S. aureus infections is TSS Toxin-1, or TSST-1. The TSST-1 is secreted as a single polypeptide chain. The gene encoding toxic shock syndrome toxin is carried by a mobile genetic element of S. aureus in the SaPI family of pathogenicity islands.{{cite journal|last=Lindsay|first=JA|author2=Ruzin, A|author3=Ross, HF|author4=Kurepina, N|author5=Novick, RP|date=July 1998|title=The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus|journal=Molecular Microbiology|volume=29|issue=2|pages=527–43|doi=10.1046/j.1365-2958.1998.00947.x|pmid=9720870|s2cid=30680160|doi-access=free}} The toxin causes the non-specific binding of MHC II, on professional antigen presenting cells, with T-cell receptors, on T cells.
In typical T-cell recognition, an antigen is taken up by an antigen-presenting cell, processed, expressed on the cell surface in complex with class II major histocompatibility complex (MHC) in a groove formed by the alpha and beta chains of class II MHC, and recognized by an antigen-specific T-cell receptor. This results in polyclonal T-cell activation. Superantigens do not require processing by antigen-presenting cells but instead, interact directly with the invariant region of the class II MHC molecule.{{Cite book |url=https://www.sciencedirect.com/book/9780123042200/principles-of-bacterial-pathogenesis |title=Principles of Bacterial Pathogenesis |publisher=Academic Press |year=2001 |isbn=978-0-12-304220-0 |editor-last=Groisman |editor-first=Eduardo Abraham |location=San Diego, Calif |page=740 |language=en |chapter=15. Pathogenic Mechanisms in Streptococcal Diseases |doi=10.1016/B978-0-12-304220-0.X5000-6 |quote=Superantigens are proteins that have the ability to bind to an invariant region of the class II major histocompatibility complex (MHC) on an antigen-presenting cell and to crosslink this receptor to a T cell through binding to the variable region of the β-chain of the T cell antigen receptor. |chapter-url=https://www.sciencedirect.com/science/article/abs/pii/B9780123042200500169 |access-date=22 June 2024 |archive-date=22 June 2024 |archive-url=https://web.archive.org/web/20240622062117/https://www.sciencedirect.com/book/9780123042200/principles-of-bacterial-pathogenesis |url-status=live }} In patients with TSS, up to 20% of the body's T-cells can be activated at one time. This polyclonal T-cell population causes a cytokine storm, followed by a multisystem disease.
Risk factors
A few possible causes of toxic shock syndrome are:{{Cite web |date=2024-06-18 |title=Sepsis and Toxic Shock Syndrome |url=https://www.sepsis.org/sepsisand/toxic-shock/ |url-status=live |archive-url=https://web.archive.org/web/20240624072247/https://www.sepsis.org/sepsisand/toxic-shock/ |archive-date=2024-06-24 |access-date=2024-06-24 |website=Sepsis Alliance |language=en}}{{Cite web |title=The Basics of Toxic Shock Syndrome |url=https://www.webmd.com/women/understanding-toxic-shock-syndrome-basics |access-date=27 December 2023 |website=WebMD |archive-date=27 December 2023 |archive-url=https://web.archive.org/web/20231227085813/https://www.webmd.com/women/understanding-toxic-shock-syndrome-basics |url-status=live }}
- Having strep throat or a viral infection like the flu or chickenpox
- Using tampons, especially if super-absorbent or left in longer than recommended
- Using contraceptive sponges, diaphragms or other devices placed inside the vagina
- History of a recent birth, miscarriage, or abortion
- Having a skin infection like impetigo or cellulitis
- Cuts or open wounds on the skin
- Surgical wounds
- Previously having TSS
Diagnosis
For staphylococcal toxic shock syndrome, the diagnosis is based upon CDC criteria defined in 2011, as follows:{{Cite web|url = https://wwwn.cdc.gov/nndss/conditions/toxic-shock-syndrome-other-than-streptococcal/case-definition/2011/|title = Toxic shock syndrome (other than Streptococcal) (TSS): 2011 Case Definition|date = 8 May 2014|access-date = 9 February 2021|publisher = Centers for Disease Control and Prevention|url-status = live|archive-url = https://web.archive.org/web/20201102183953/https://wwwn.cdc.gov/nndss/conditions/toxic-shock-syndrome-other-than-streptococcal/case-definition/2011/|archive-date = 2 November 2020|df = dmy-all}}
- Body temperature > {{convert|38.9|°C|°F}}
- Systolic blood pressure < 90 mmHg
- Diffuse macular erythroderma
- Desquamation (especially of the palms and soles) 1–2 weeks after onset
- Involvement of three or more organ systems:
- * Gastrointestinal (vomiting, diarrhea)
- * Muscular: severe myalgia or creatine phosphokinase level at least twice the upper limit of normal for laboratory
- * Mucous membrane hyperemia (vaginal, oral, conjunctival)
- * Kidney failure (serum creatinine > 2 times normal)
- * Liver inflammation (bilirubin, AST, or ALT > 2 times normal)
- * Low platelet count (platelet count < 100,000 / mm3)
- * Central nervous system involvement (confusion without any focal neurological findings)
- Negative results of:
- * Blood, throat, and CSF cultures for other bacteria (besides S. aureus)
- * Negative serology for Rickettsia infection, leptospirosis, and measles
Cases are classified as confirmed or probable as follows:
- Confirmed: All six of the criteria above are met (unless the patient dies before desquamation can occur)
- Probable: Five of the six criteria above are met
Treatment
The severity of this disease frequently warrants hospitalization. Admission to the intensive care unit is often necessary for supportive care (for aggressive fluid management, ventilation, renal replacement therapy and inotropic support), particularly in the case of multiple organ failure.{{cite journal|journal=The Pediatric Infectious Disease Journal|volume=18|issue=12|pages=1096–1100|title=Improved outcome of clindamycin compared with beta-lactam antibiotic treatment for invasive Streptococcus pyogenes infection|vauthors=Zimbelman J, Palmer A, Todd J|url=http://www.pidj.org/pt/re/pidj/abstract.00006454-199912000-00014.htm;jsessionid=JZ2WwJhpv8J4dh2nDJWTywCFB4Lyy8L6Xw61G1hMCl2jYXBhQGp2!-2118404334!181195629!8091!-1|doi=10.1097/00006454-199912000-00014|year=1999|pmid=10608632|access-date=16 February 2009|archive-date=11 January 2020|archive-url=https://web.archive.org/web/20200111104126/https://journals.lww.com/pidj/pages/articleviewer.aspx?year=1999&issue=12000&article=00014&type=abstract|url-status=live}} Treatment includes removal or draining of the source of infection—often a tampon—and draining of abscesses. Outcomes are poorer in patients who do not have the source of infection removed.
Antibiotic treatment should cover both S. pyogenes and S. aureus. This may include a combination of cephalosporins, penicillins or vancomycin. The addition of clindamycin{{cite journal|title=Clindamycin-induced suppression of toxic-shock syndrome-associated exotoxin production|vauthors=Schlievert PM, Kelly JA |journal=The Journal of Infectious Diseases |volume=149|issue=3|page=471|year=1984|pmid=6715902|doi=10.1093/infdis/149.3.471}} or gentamicin{{cite journal|journal=Antimicrobial Agents and Chemotherapy|date=1 August 1997|pages=1682–5|volume=41|issue=8|title=Combination of flucloxacillin and gentamicin inhibits toxic shock syndrome toxin 1 production by Staphylococcus aureus in both logarithmic and stationary phases of growth|vauthors=van Langevelde P, van Dissel JT, Meurs CJ, Renz J, Groeneveld PH|pmid=9257741|pmc=163985|doi=10.1128/AAC.41.8.1682}} reduces toxin production and mortality.
In some cases doctors will prescribe other treatments such as blood pressure medications (to stabilize blood pressure if it is too low), dialysis, oxygen mask (to stabilize oxygen levels), and sometimes a ventilator. These will sometimes be used to help treat side effects of contracting TSS.
Prognosis
With proper treatment, people usually recover in two to three weeks. The condition can, however, be fatal within hours. TSS has a mortality rate of 30–70%. Children who are affected by TSS tend to recover more easily than adults do.{{Cite web |date=23 November 2021 |title=Streptococcal Toxic Shock Syndrome: For Clinicians {{!}} CDC |url=https://www.cdc.gov/groupastrep/diseases-hcp/Streptococcal-Toxic-Shock-Syndrome.html |access-date=2 April 2022 |website=www.cdc.gov |language=en-us |archive-date=23 December 2022 |archive-url=https://web.archive.org/web/20221223185356/https://www.cdc.gov/groupastrep/diseases-hcp/Streptococcal-Toxic-Shock-Syndrome.html |url-status=live }}
Complications
- Amputation of fingers, toes, and sometimes limbs{{Cite web |date=2019-11-19 |title=Toxic Shock Syndrome (TSS) |url=https://www.hopkinsmedicine.org/health/conditions-and-diseases/toxic-shock-syndrome-tss |url-status=live |archive-url=https://web.archive.org/web/20220129110243/https://www.hopkinsmedicine.org/health/conditions-and-diseases/toxic-shock-syndrome-tss |archive-date=2022-01-29 |access-date=2022-03-31 |website=Johns Hopkins School of Medicine |language=en}}
- Death{{cite web |date=2022-03-23 |title=Toxic shock syndrome |url=https://www.mayoclinic.org/diseases-conditions/toxic-shock-syndrome/symptoms-causes/syc-20355384 |url-status=live |archive-url=https://web.archive.org/web/20230306012522/https://www.mayoclinic.org/diseases-conditions/toxic-shock-syndrome/symptoms-causes/syc-20355384 |archive-date=2023-03-06 |access-date=2023-03-15 |website=Mayo Clinic}}
- Liver or kidney failure{{Cite web |date=2009-04-08 |title=Toxic Shock Syndrome |url=https://rarediseases.org/rare-diseases/toxic-shock-syndrome/ |url-status=live |archive-url=https://web.archive.org/web/20220324003737/https://rarediseases.org/rare-diseases/toxic-shock-syndrome/ |archive-date=2022-03-24 |access-date=2022-03-31 |website=National Organization for Rare Disorders |language=en}}
- Heart problems
- Respiratory distress
- Septic shock{{cite book |last1=Ferri |first1=Fred F. |url=https://archive.org/details/ferrisdifferenti0000ferr/page/478/mode/1up |title=Ferri's Differential Diagnosis: A Practical Guide to the Differential Diagnosis of Symptoms, Signs, and Clinical Disorders |publisher=Mosby |year=2010 |isbn=978-0-323-07699-9 |edition=2nd |location=Philadelphia |page=478 |language=en |lccn=}}
- Other abnormalities may occur depending on the case
Prevention
- Use pads at night instead of tampons
- Try to keep up with changing a tampon every 4 to 8 hours
- Use low absorbent tampons
- Follow directions when using vaginal contraceptives (sponges or diaphragms)
- Make sure to maintain good hygiene during a menstrual cycle
Epidemiology
Staphylococcal toxic shock syndrome is rare and the number of reported cases has declined significantly since the 1980s. Patrick Schlievert, who published a study on it in 2004, determined incidence at three to four out of 100,000 tampon users per year; the information supplied by manufacturers of sanitary products such as Tampax and Stayfree puts it at one to 17 of every 100,000 menstruating females, per year.{{cite news |first=Julie Sevrens |last=Lyons |title=A New Generation Faces Toxic Shock Syndrome |agency=Knight Ridder Newspapers |newspaper=The Seattle Times |date=25 January 2005 |url=http://www.seattletimes.com/seattle-news/health/a-new-generation-faces-toxic-shock-syndrome/ |access-date=11 September 2017 |archive-date=11 September 2017 |archive-url=https://web.archive.org/web/20170911162601/http://www.seattletimes.com/seattle-news/health/a-new-generation-faces-toxic-shock-syndrome/ |url-status=live }} first published as "Lingering Risk", San Jose Mercury News, 13 December 2004{{cite web | year = 2006 | url = http://www.stayfree.com/faq_TSS.jsp | title = Stayfree — FAQ About Toxic Shock Syndrome (TSS) | access-date = 13 October 2006 | url-status = dead | archive-url = https://web.archive.org/web/20070323054438/http://www.stayfree.com/faq_TSS.jsp | archive-date = 23 March 2007 | df = dmy-all }}
TSS was considered a sporadic disease that occurred in immunocompromised people. It was not a more well-known disease until the 1980s, when high-absorbency tampons were in use. Due to the idea of the tampons having a high absorbency this led users to believe that they could leave a tampon in for several hours. Doing this allowed the bacteria to grow and led to infection. This resulted in a spike of cases of TSS.{{Cite journal |last=Mishra |first=Gita |date=2014 |title=Australian Longitudinal Study on Women's Health |url=http://dx.doi.org/10.14264/uql.2016.448 |access-date=2 April 2022 |website=UQ eSpace|doi=10.14264/uql.2016.448 }}
Philip M. Tierno Jr. helped determine that tampons were behind TSS cases in the early 1980s. Tierno blames the introduction of higher-absorbency tampons in 1978. A study by Tierno also determined that all-cotton tampons were less likely to produce the conditions in which TSS can grow; this was done using a direct comparison of 20 brands of tampons including conventional cotton/rayon tampons and 100% organic cotton tampons from Natracare. In fact, Dr Tierno goes as far to state, "The bottom line is that you can get TSS with synthetic tampons, but not with an all-cotton tampon."{{cite news|url=https://www.theguardian.com/world/2003/nov/07/gender.uk|title=Welcome to the cotton club|first=Emma|last=Lindsey|date=6 November 2003|newspaper=The Guardian|url-status=live|archive-url=https://web.archive.org/web/20161109224602/https://www.theguardian.com/world/2003/nov/07/gender.uk|archive-date=9 November 2016}}
A rise in reported cases occurred in the early 2000s: eight deaths from the syndrome in California in 2002 after three successive years of four deaths per year, and Schlievert's study found cases in part of Minnesota more than tripled from 2000 to 2003. Schlievert considers earlier onset of menstruation to be a cause of the rise; others, such as Philip M. Tierno and Bruce A. Hanna, blame new high-absorbency tampons introduced in 1999 and manufacturers discontinuing warnings not to leave tampons in overnight.
In Japan, cases of streptococcal toxic shock syndrome (STSS) reached 1,019 from January to June 2024, as compared to the 941 cases reported in 2023.{{Cite web |date=21 June 2024|title=Japan is dealing with a 'flesh-eating bacteria' outbreak. Here's what we know about STSS and how to avoid infection|url=https://www.abc.net.au/news/2024-06-21/what-is-the-flesh-eating-bacteria-outbreak-in-japan/103996264|access-date=22 June 2024|publisher=ABC News|first=Elissa|last=Steedman}}{{cite news|url=https://www.washingtonpost.com/health/2024/06/19/japan-stss-flesh-eating-bacteria/|title=A deadly bacterial infection is on the rise in Japan. What is STSS?|newspaper=The Washington Post|date=19 June 2024|first1=Niha|last1=Masih|first2=Frances|last2=Vinall|access-date=21 June 2024|archive-date=19 June 2024|archive-url=https://web.archive.org/web/20240619155207/https://www.washingtonpost.com/health/2024/06/19/japan-stss-flesh-eating-bacteria/|url-status=live}}
TSS is more common during the winter and spring and occurs most often in the young and old.
Toxic shock syndrome is commonly known to be an issue for those who menstruate, although fifty percent of toxic shock syndrome cases are unrelated to menstruation. TSS in these cases can be caused by skin wounds, surgical sites, nasal packing, and burns.
History
= Initial description =
The term "toxic shock syndrome" was first used in 1978 by a Denver pediatrician, James K. Todd, to describe the staphylococcal illness in three boys and four girls aged 8–17 years.{{cite journal |vauthors=Todd J, Fishaut M, Kapral F, Welch T |title=Toxic-shock syndrome associated with phage-group-I staphylococci |journal=The Lancet |volume=2 |issue=8100 |pages=1116–8 |year=1978 |pmid=82681 |doi=10.1016/S0140-6736(78)92274-2|s2cid=54231145 }} Even though S. aureus was isolated from mucosal sites in the patients, bacteria could not be isolated from the blood, cerebrospinal fluid, or urine, raising suspicion that a toxin was involved. The authors of the study noted reports of similar staphylococcal illnesses had appeared occasionally as far back as 1927, but the authors at the time failed to consider the possibility of a connection between toxic shock syndrome and tampon use, as three of the girls who were menstruating when the illness developed were using tampons. Many cases of TSS occurred after tampons were left in after they should have been removed.{{cite journal |author=Todd J |title=Toxic shock syndrome—scientific uncertainty and the public media |journal=Pediatrics |volume=67 |issue=6 |pages=921–3 |year=1981 |doi=10.1542/peds.67.6.921 |pmid=7232057|s2cid=3051129 }}
= Rely tampons =
Following controversial test marketing in Rochester, New York, and Fort Wayne, Indiana,{{cite web|author=Finley, Harry|url=http://www.mum.org/Rely.htm|title=Rely Tampon: It Even Absorbed the Worry!|work=Museum of Menstruation|access-date=20 March 2006|url-status=live|archive-url=https://web.archive.org/web/20060414012958/http://www.mum.org/Rely.htm|archive-date=14 April 2006}} in August 1978, Procter and Gamble introduced superabsorbent Rely tampons to the United States market{{cite journal|author=Hanrahan S|title=Historical review of menstrual toxic shock syndrome|journal=Women & Health |volume=21|issue=2–3|pages=141–65|year=1994|pmid=8073784|doi=10.1300/J013v21n02_09|last2=Submission|first2=Haworth Continuing Features}} in response to demands for tampons that could contain an entire menstrual flow without leaking or replacement.{{cite web | author = Citrinbaum, Joanna | date = 14 October 2003 | url = http://www.collegian.psu.edu/archives/article_452b372f-0f54-5d7b-a034-ffff9d824503.html | title = The question's absorbing: 'Are tampons little white lies?' | work = The Daily Collegian | access-date = 27 December 2015 | url-status = live | archive-url = https://web.archive.org/web/20170620095544/http://www.collegian.psu.edu/archives/article_452b372f-0f54-5d7b-a034-ffff9d824503.html | archive-date = 20 June 2017 | df = dmy-all }} Rely used carboxymethylcellulose (CMC) and compressed beads of polyester for absorption. This tampon design could absorb nearly 20 times its own weight in fluid.{{cite web|author=Vitale, Sidra|year=1997|url=http://www.io.com/~wwwomen/menstruation/tss.html|title=Toxic Shock Syndrome|publisher=Web by Women, for Women|access-date=20 March 2006 |archive-url = https://web.archive.org/web/20060316030919/http://www.io.com/~wwwomen/menstruation/tss.html |archive-date = 16 March 2006}} Further, the tampon would "blossom" into a cup shape in the vagina to hold menstrual fluids without leakage.{{Cite book |last=Vostral |first=Sharra Louise |author-link=Sharra L. Vostral |url= |title=Toxic Shock: A Social History |title-link=Toxic Shock: A Social History |date=2018-11-27 |publisher=New York University Press |isbn=978-1-4798-7784-3 |location=New York City |page=140 |language=en |chapter=5. Health Activism and the Limits of Labeling |doi=10.18574/nyu/9781479877843.001.0001 |lccn=2018012210 |oclc=1031956695 |quote=Pursettes blossom out to absorb more fully, more effectively. |chapter-url=https://chooser.crossref.org/?doi=10.18574%2Fnyu%2F9781479877843.003.0006}}{{Cite journal |date=July 1963 |title=No bulky applicator—Prelubricated tip |url=https://archive.org/details/sim_ebony_1963-07_18_9/page/44/mode/1up |journal=Ebony |volume=18 |issue=9 |page=44 |quote=On contact with moisture, new Pursettes blossom out to absorb more fully, more effectively. |via=Internet Archive}}
In January 1980, epidemiologists in Wisconsin and Minnesota reported the appearance of TSS, mostly in those menstruating, to the CDC.{{cite journal |author=CDC |author-link=Centers for Disease Control and Prevention |title=Toxic-shock syndrome—United States |journal=Morbidity and Mortality Weekly Report |volume=29 |issue=20 |pages=229–230 |date=23 May 1980 |url=http://stacks.cdc.gov/view/cdc/1434/ |url-status=live |archive-url=https://web.archive.org/web/20141020044053/http://stacks.cdc.gov/view/cdc/1434 |archive-date=20 October 2014 }} S. aureus was successfully cultured from most of the subjects. The Toxic Shock Syndrome Task Force was created and investigated the epidemic as the number of reported cases rose throughout the summer of 1980.{{cite news |author=Dennis Hevesi |title=Bruce Dan, Who Helped Link Toxic Shock and Tampons, Is Dead at 64 |url=https://www.nytimes.com/2011/09/11/health/research/11dan.html |newspaper=The New York Times |date=10 September 2011 |access-date=12 September 2011 |url-status=live |archive-url=https://web.archive.org/web/20110911170623/http://www.nytimes.com/2011/09/11/health/research/11dan.html |archive-date=11 September 2011 |author-link=Dennis Hevesi }} In September 1980, CDC reported users of Rely were at increased risk for developing TSS.{{cite journal |author=CDC |author-link=Centers for Disease Control and Prevention |title=Follow-up on toxic-shock syndrome |journal=Morbidity and Mortality Weekly Report |volume=29 |issue=37 |pages=441–5 |date=19 September 1980 |url=http://stacks.cdc.gov/view/cdc/1460/ |url-status=live |archive-url=https://web.archive.org/web/20160304025425/http://stacks.cdc.gov/view/cdc/1460/ |archive-date=4 March 2016 }}
On 22 September 1980, Procter and Gamble recalled Rely{{cite journal|author=Hanrahan S|title=Historical review of menstrual toxic shock syndrome|journal=Women & Health |volume=21|issue=2–3|pages=141–165|year=1994|pmid=8073784|doi=10.1300/J013v21n02_09|last2=Submission|first2=Haworth Continuing Features}} following release of the CDC report. As part of the voluntary recall, Procter and Gamble entered into a consent agreement with the FDA "providing for a program for notification to consumers and retrieval of the product from the market".{{cite web |author=Kohen, Jamie |year=2001 |url=https://dash.harvard.edu/bitstream/handle/1/8852185/Kohen.html?sequence=2 |title=The History of the Regulation of Menstrual Tampons |work=LEDA at Harvard Law School |access-date=5 March 2017 |url-status=live |archive-url=https://web.archive.org/web/20161020060908/https://dash.harvard.edu/bitstream/handle/1/8852185/Kohen.html?sequence=2 |archive-date=20 October 2016 }} However, it was clear to other investigators that Rely was not the only culprit. Other regions of the United States saw increases in menstrual TSS before Rely was introduced.{{cite journal|vauthors=Petitti D, Reingold A, Chin J |title=The incidence of toxic shock syndrome in Northern California. 1972 through 1983|journal= JAMA |volume=255 |issue=3 |pages=368–72 |year=1986 |pmid=3941516|doi= 10.1001/jama.255.3.368}}
It was shown later that higher absorbency of tampons was associated with an increased risk for TSS, regardless of the chemical composition or the brand of the tampon. The sole exception was Rely, for which the risk for TSS was still higher when corrected for its absorbency.{{cite journal |vauthors=Berkley S, Hightower A, Broome C, Reingold A |title=The relationship of tampon characteristics to menstrual toxic shock syndrome |journal=JAMA |volume=258|issue=7|pages=917–20|year=1987|pmid=3613021 |doi=10.1001/jama.258.7.917}} The ability of carboxymethylcellulose to filter the S. aureus toxin that causes TSS may account for the increased risk associated with Rely.
Notable cases
- Clive Barker, fully recovered, contracted the syndrome after visiting the dentist.{{cite magazine|url=http://news-briefs.ew.com/2012/02/07/clive-barker-toxic-shock/|title=Clive Barker recovering from 'near fatal' case of toxic shock syndrome|magazine=Entertainment Weekly|date=7 February 2012|access-date=11 November 2014|url-status=live|archive-url=https://web.archive.org/web/20141111003549/http://news-briefs.ew.com/2012/02/07/clive-barker-toxic-shock/|archive-date=11 November 2014}}
- Lana Coc-Kroft, fully recovered, contracted the syndrome due to group A streptococcal infection.{{cite news|url=http://www.nzherald.co.nz/entertainment/news/article.cfm?c_id=1501119&objectid=10556979&pnum=0|title=Lana's leap outside her comfort zone|last=Lang|first=Sarah|date=15 February 2009|newspaper=The New Zealand Herald|archive-url=https://archive.today/20130223032919/http://www.nzherald.co.nz/entertainment/news/article.cfm?c_id=1501119&objectid=10556979&pnum=0|archive-date=23 February 2013|access-date=26 January 2010|url-status=dead}}
- Jim Henson, d. 1990, contracted the syndrome due to group A streptococcal infection and subsequently died from it.{{cite news| last =Altman| first =Lawrence| title =The Doctor's World; Henson Death Shows Danger of Pneumonia| work =The New York Times| date =29 May 1990| url =https://query.nytimes.com/gst/fullpage.html?res=9C0CE7D6133BF93AA15756C0A966958260&sec=health&spon=| access-date =10 June 2017| url-status =live| archive-url =https://web.archive.org/web/20071016193259/http://query.nytimes.com/gst/fullpage.html?res=9C0CE7D6133BF93AA15756C0A966958260&sec=health&spon=| archive-date =16 October 2007| df =dmy-all}}{{cite book |editor-last1=Ryan |editor-first1=KJ |editor-last2=Ray |editor-first2=CG |title=Sherris Medical Microbiology |edition=4th |publisher=McGraw Hill |year=2004 |pages=276–286 |isbn=0-8385-8529-9}}
- Nan C. Robertson, d. 2009, the 1983 winner of the Pulitzer Prize for Feature Writing for [https://www.nytimes.com/1982/09/19/magazine/toxic-shock.html Toxic Shock], her medically detailed account of her struggle with toxic shock syndrome, a cover story for The New York Times Magazine which at that time became the most widely syndicated article in Times history.{{cite web |url=https://www.nytimes.com/1982/09/19/magazine/toxic-shock.html |title=Toxic Shock |last=Robertson |first=Nan |work=The New York Times |date=19 September 1982 |access-date=9 November 2022 |archive-date=9 November 2022 |archive-url=https://web.archive.org/web/20221109143513/https://www.nytimes.com/1982/09/19/magazine/toxic-shock.html |url-status=live }}{{cite book|chapter-url=http://www.atariarchives.org/deli/times_goes_computer.php|title=Digital Deli|first=Carla Marie|last=Rupp|chapter=The Times Goes Computer|editor-first=Steve|editor-last=Ditlea|publisher=Atari Archives|access-date=12 October 2013|url-status=live|archive-url=https://web.archive.org/web/20130827201631/http://atariarchives.org/deli/times_goes_computer.php|archive-date=27 August 2013}}
- Barbara Robison, lead vocalist for the psychedelic rock band the Peanut Butter Conspiracy, was performing in Butte, Montana on 6 April 1988; during the concert, she fell ill and was transported to a hospital. She did not recover, and died sixteen days later on 22 April from toxic shock syndrome at the age of 42.{{cite book|url=https://books.google.com/books?id=DykffzkFALoC&q=hair+musical+barbara+robison&pg=PA555|title=Rock Obituaries – Knocking On Heaven's Door|isbn=978-0-85712-117-2|accessdate=29 January 2015|last1=Talevski|first1=Nick|date=7 April 2010|publisher=Omnibus Press }}
- Mike Von Erich, d. 1987, developed the syndrome after shoulder surgery: he made an apparent recovery but experienced brain damage and weight loss as a result of the condition; he died by suicide later.{{cite book|last=Mercer|first=Bill|title=Play-by-Play: Tales from a Sportscasting Insider|url=https://books.google.com/books?id=zb4VAAAAQBAJ&pg=PA277|access-date=12 October 2013|year=2007|publisher=Taylor Trade Publishing|isbn=978-1-4617-3474-1|pages=277–|url-status=live|archive-url=https://web.archive.org/web/20131015170021/http://books.google.com/books?id=zb4VAAAAQBAJ&pg=PA277|archive-date=15 October 2013}}
References
{{Reflist}}
External links
- {{cite journal |author=Stevens DL |title=Streptococcal toxic-shock syndrome: spectrum of disease, pathogenesis, and new concepts in treatment |journal=Emerging Infectious Diseases |volume=1 |issue=3 |pages=69–78 |year=1995 |pmid=8903167 |pmc=2626872 |doi=10.3201/eid0103.950301 }}
- {{cite web |title=Toxic Shock Syndrome (TSS): The Facts |work=Toxic Shock Syndrome information service |publisher=tssis.com |url=http://www.tssis.com/}}
{{Medical resources
| DiseasesDB = 13187
| ICD11 = {{ICD11|1C45}}
| ICD10 = {{ICD10|A|48|3|a|30}}
| ICD9 = {{ICD9|040.82}}
| ICDO =
| OMIM =
| MedlinePlus = 000653
| eMedicineSubj = med
| eMedicineTopic = 2292
| eMedicine_mult = {{eMedicine2|emerg|600}} {{eMedicine2|derm|425}} {{eMedicine2|ped|2269}}
| MeshID = D012772
}}
{{Gram-positive bacterial diseases}}
{{shock types}}
{{DEFAULTSORT:Toxic Shock Syndrome}}
Category:Bacterium-related cutaneous conditions
Category:Wikipedia emergency medicine articles ready to translate