traced monoidal category

In category theory, a traced monoidal category is a category with some extra structure which gives a reasonable notion of feedback.

A traced symmetric monoidal category is a symmetric monoidal category C together with a family of functions

:\mathrm{Tr}^U_{X,Y}:\mathbf{C}(X\otimes U,Y\otimes U)\to\mathbf{C}(X,Y)

called a trace, satisfying the following conditions:

  • naturality in X: for every f:X\otimes U\to Y\otimes U and g:X'\to X,

::\mathrm{Tr}^U_{X',Y}(f \circ (g\otimes \mathrm{id}_U)) = \mathrm{Tr}^U_{X,Y}(f) \circ g

Image:Trace diagram naturality 1.svg

  • naturality in Y: for every f:X\otimes U\to Y\otimes U and g:Y\to Y',

::\mathrm{Tr}^U_{X,Y'}((g\otimes \mathrm{id}_U) \circ f) = g \circ \mathrm{Tr}^U_{X,Y}(f)

Image:Trace diagram naturality 2.svg

  • dinaturality in U: for every f:X\otimes U\to Y\otimes U' and g:U'\to U

::\mathrm{Tr}^U_{X,Y}((\mathrm{id}_Y\otimes g) \circ f)=\mathrm{Tr}^{U'}_{X,Y}(f \circ (\mathrm{id}_X\otimes g))

Image:Trace diagram dinaturality.svg

  • vanishing I: for every f:X \otimes I \to Y \otimes I, (with \rho_X \colon X\otimes I\cong X being the right unitor),

::\mathrm{Tr}^I_{X,Y}(f)=\rho_Y \circ f \circ \rho_X^{-1}

Image:Trace diagram vanishing.svg

  • vanishing II: for every f:X\otimes U\otimes V\to Y\otimes U\otimes V

::\mathrm{Tr}^U_{X,Y}(\mathrm{Tr}^V_{X\otimes U,Y\otimes U}(f)) = \mathrm{Tr}^{U\otimes V}_{X,Y}(f)

Image:Trace diagram associativity.svg

  • superposing: for every f:X\otimes U\to Y\otimes U and g:W\to Z,

::g\otimes \mathrm{Tr}^U_{X,Y}(f)=\mathrm{Tr}^U_{W\otimes X,Z\otimes Y}(g\otimes f)

Image:Trace diagram superposition.svg

  • yanking:

::\mathrm{Tr}^X_{X,X}(\gamma_{X,X})=\mathrm{id}_X

(where \gamma is the symmetry of the monoidal category).

Image:Trace diagram yanking.svg

Properties

  • Every compact closed category admits a trace.
  • Given a traced monoidal category C, the Int construction generates the free (in some bicategorical sense) compact closure Int(C) of C.

References

  • {{cite journal

| author1-link = André Joyal |first1=André |last1=Joyal

|author2-link=Ross Street |first2=Ross |last2=Street

|first3=Dominic |last3=Verity

| year = 1996

| title = Traced monoidal categories

| journal = Mathematical Proceedings of the Cambridge Philosophical Society

| volume = 119

|issue=3 | pages = 447–468

| doi = 10.1017/S0305004100074338

|bibcode=1996MPCPS.119..447J |s2cid=50511333 }}

Category:Monoidal categories

{{Category theory}}

{{categorytheory-stub}}