transfer entropy
{{Short description|Non-parametric statistic on information transfer}}
Transfer entropy is a non-parametric statistic measuring the amount of directed (time-asymmetric) transfer of information between two random processes.{{cite journal|last=Schreiber|first=Thomas|title=Measuring information transfer|journal=Physical Review Letters|date=1 July 2000|volume=85|issue=2|pages=461–464|doi=10.1103/PhysRevLett.85.461|pmid=10991308|arxiv=nlin/0001042|bibcode=2000PhRvL..85..461S|s2cid=7411376}}{{cite journal|year= 2007 |title = Granger causality |volume = 2 |issue = 7 |pages = 1667 |last= Seth |first=Anil|journal=Scholarpedia |doi=10.4249/scholarpedia.1667 |bibcode=2007SchpJ...2.1667S|doi-access= free }}{{cite journal|last=Hlaváčková-Schindler|first=Katerina|author2=Palus, M |author3=Vejmelka, M |author4= Bhattacharya, J |title=Causality detection based on information-theoretic approaches in time series analysis|journal=Physics Reports|date=1 March 2007|volume=441|issue=1|pages=1–46|doi=10.1016/j.physrep.2006.12.004|bibcode=2007PhR...441....1H|citeseerx=10.1.1.183.1617}} Transfer entropy from a process X to another process Y is the amount of uncertainty reduced in future values of Y by knowing the past values of X given past values of Y. More specifically, if and for denote two random processes and the amount of information is measured using Shannon's entropy, the transfer entropy can be written as:
:
T_{X\rightarrow Y} = H\left( Y_t \mid Y_{t-1:t-L}\right) - H\left( Y_t \mid Y_{t-1:t-L}, X_{t-1:t-L}\right),
where H(X) is Shannon's entropy of X. The above definition of transfer entropy has been extended by other types of entropy measures such as Rényi entropy.{{Cite journal|last1=Jizba|first1=Petr|last2=Kleinert|first2=Hagen|last3=Shefaat|first3=Mohammad|date=2012-05-15|title=Rényi's information transfer between financial time series|journal=Physica A: Statistical Mechanics and Its Applications|language=en|volume=391|issue=10|pages=2971–2989|doi=10.1016/j.physa.2011.12.064|issn=0378-4371|arxiv=1106.5913|bibcode=2012PhyA..391.2971J|s2cid=51789622}}
Transfer entropy is conditional mutual information,{{cite journal|last=Wyner|first=A. D. |title=A definition of conditional mutual information for arbitrary ensembles|journal=Information and Control|year=1978|volume=38|issue=1|pages=51–59|doi=10.1016/s0019-9958(78)90026-8|doi-access=free}}{{cite journal|last=Dobrushin|first=R. L. |title=General formulation of Shannon's main theorem in information theory|journal=Uspekhi Mat. Nauk|year=1959|volume=14|pages=3–104}} with the history of the influenced variable in the condition:
:
T_{X\rightarrow Y} = I(Y_t ; X_{t-1:t-L} \mid Y_{t-1:t-L}).
Transfer entropy reduces to Granger causality for vector auto-regressive processes.{{cite journal|last=Barnett|first=Lionel|title=Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables|journal=Physical Review Letters|date=1 December 2009|volume=103|issue=23|doi=10.1103/PhysRevLett.103.238701|bibcode=2009PhRvL.103w8701B|pmid=20366183|page=238701|arxiv=0910.4514|s2cid=1266025}} Hence, it is advantageous when the model assumption of Granger causality doesn't hold, for example, analysis of non-linear signals.{{cite journal|last=Lungarella|first=M.|author2=Ishiguro, K. |author3=Kuniyoshi, Y. |author4= Otsu, N. |title=Methods for quantifying the causal structure of bivariate time series|journal=International Journal of Bifurcation and Chaos|date=1 March 2007|volume=17|issue=3|pages=903–921|doi=10.1142/S0218127407017628|bibcode=2007IJBC...17..903L|citeseerx=10.1.1.67.3585}} However, it usually requires more samples for accurate estimation.{{cite journal|last=Pereda|first=E|author2=Quiroga, RQ |author3=Bhattacharya, J |title=Nonlinear multivariate analysis of neurophysiological signals.|journal=Progress in Neurobiology|date=Sep–Oct 2005|volume=77|issue=1–2|pages=1–37|pmid=16289760|doi=10.1016/j.pneurobio.2005.10.003|arxiv=nlin/0510077|bibcode=2005nlin.....10077P|s2cid=9529656}}
The probabilities in the entropy formula can be estimated using different approaches (binning, nearest neighbors) or, in order to reduce complexity, using a non-uniform embedding.{{cite journal|last=Montalto|first=A|author2=Faes, L |author3=Marinazzo, D |title=MuTE: A MATLAB Toolbox to Compare Established and Novel Estimators of the Multivariate Transfer Entropy.|journal=PLOS ONE|date=Oct 2014|pmid=25314003|doi=10.1371/journal.pone.0109462|volume=9|issue=10|pmc=4196918|page=e109462|bibcode=2014PLoSO...9j9462M|doi-access=free}}
While it was originally defined for bivariate analysis, transfer entropy has been extended to multivariate forms, either conditioning on other potential source variables{{cite journal|last=Lizier|first=Joseph|author2=Prokopenko, Mikhail |author3=Zomaya, Albert |title=Local information transfer as a spatiotemporal filter for complex systems|journal=Physical Review E|year=2008|volume=77|issue=2|pages=026110|doi=10.1103/PhysRevE.77.026110|pmid=18352093|arxiv=0809.3275|bibcode=2008PhRvE..77b6110L|s2cid=15634881}} or considering transfer from a collection of sources,{{cite journal|last=Lizier|first=Joseph|author2=Heinzle, Jakob |author3=Horstmann, Annette |author4=Haynes, John-Dylan |author5= Prokopenko, Mikhail |title=Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity|journal=Journal of Computational Neuroscience|year=2011|volume=30|issue=1|pages=85–107|doi=10.1007/s10827-010-0271-2|pmid=20799057|s2cid=3012713}} although these forms require more samples again.
Transfer entropy has been used for estimation of functional connectivity of neurons,{{cite journal|last=Vicente|first=Raul|author2=Wibral, Michael |author3=Lindner, Michael |author4= Pipa, Gordon |title=Transfer entropy—a model-free measure of effective connectivity for the neurosciences |journal=Journal of Computational Neuroscience|date=February 2011|volume=30|issue=1|pages=45–67|doi=10.1007/s10827-010-0262-3|pmid=20706781|pmc=3040354}}{{cite journal|last=Shimono|first=Masanori|author2=Beggs, John |title=Functional clusters, hubs, and communities in the cortical microconnectome |url= |journal=Cerebral Cortex|date= October 2014|volume=25|issue=10|pages=3743–57|doi=10.1093/cercor/bhu252 |pmid=25336598 |pmc=4585513}} social influence in social networks{{cite conference |arxiv=1110.2724|title= Information transfer in social media|last1= Ver Steeg |first1= Greg|last2=Galstyan|first2= Aram |year= 2012|publisher= ACM|book-title= Proceedings of the 21st international conference on World Wide Web (WWW '12) |pages= 509–518 |bibcode=2011arXiv1110.2724V}} and statistical causality between armed conflict events.{{Cite journal |last1=Kushwaha |first1=Niraj |last2=Lee |first2=Edward D |date=July 2023 |title=Discovering the mesoscale for chains of conflict |url=https://doi.org/10.1093/pnasnexus/pgad228 |journal=PNAS Nexus |volume=2 |issue=7 |pages=pgad228 |doi=10.1093/pnasnexus/pgad228 |issn=2752-6542 |pmc=10392960 |pmid=37533894}}
Transfer entropy is a finite version of the directed information which was defined in 1990 by James Massey{{cite journal|last1=Massey|first1=James|title=Causality, Feedback And Directed Information|date=1990|issue=ISITA|citeseerx=10.1.1.36.5688}} as
, where denotes the vector and denotes . The directed information places an important role in characterizing the fundamental limits (channel capacity) of communication channels with or without feedback{{cite journal|last1=Permuter|first1=Haim Henry|last2=Weissman|first2=Tsachy|last3=Goldsmith|first3=Andrea J.|title=Finite State Channels With Time-Invariant Deterministic Feedback|journal=IEEE Transactions on Information Theory|date=February 2009|volume=55|issue=2|pages=644–662|doi=10.1109/TIT.2008.2009849|arxiv=cs/0608070|s2cid=13178}}{{cite journal|last1=Kramer|first1=G.|title=Capacity results for the discrete memoryless network|journal=IEEE Transactions on Information Theory|date=January 2003|volume=49|issue=1|pages=4–21|doi=10.1109/TIT.2002.806135}} and gambling with causal side information.{{cite journal|last1=Permuter|first1=Haim H.|last2=Kim|first2=Young-Han|last3=Weissman|first3=Tsachy|title=Interpretations of Directed Information in Portfolio Theory, Data Compression, and Hypothesis Testing|journal=IEEE Transactions on Information Theory|date=June 2011|volume=57|issue=6|pages=3248–3259|doi=10.1109/TIT.2011.2136270|arxiv=0912.4872|s2cid=11722596}}
See also
References
{{Reflist|2}}
External links
- {{cite web|title=Transfer Entropy Toolbox|url=http://code.google.com/p/transfer-entropy-toolbox/|publisher=Google Code}}, a toolbox, developed in C++ and MATLAB, for computation of transfer entropy between spike trains.
- {{cite web|title=Java Information Dynamics Toolkit (JIDT)|url=https://github.com/jlizier/jidt|publisher=GitHub|date=2019-01-16}}, a toolbox, developed in Java and usable in MATLAB, GNU Octave and Python, for computation of transfer entropy and related information-theoretic measures in both discrete and continuous-valued data.
- {{cite web|title=Multivariate Transfer Entropy (MuTE) toolbox|url=https://github.com/montaltoalessandro/MuTE|publisher=GitHub|date=2019-01-09}}, a toolbox, developed in MATLAB, for computation of transfer entropy with different estimators.
Category:Nonlinear time series analysis