transition metal azide complex

File:CSD CIF RIJLAX.png

Transition metal azide complexes are coordination complexes containing one or more azide (N3) ligands.{{cite journal |doi=10.1002/zaac.201300162|title=Azide Chemistry - an Inorganic Perspective, Part I Metal Azides: Overview, General Trends and Recent Developments|year=2013|last1=Fehlhammer|first1=Wolf Peter|last2=Beck|first2=Wolfgang|journal=Zeitschrift für Anorganische und Allgemeine Chemie|volume=639|issue=7|pages=1053–1082}} In addition to coordination complexes, this article summarizes homoleptic transition metal azides, which are often coordination polymers.

Structure and bonding

Azide is a pseudohalide but more nucleophilic than chloride, as reflected by the higher pKa of hydrazoic acid (4.6) vs hydrochloric acid (-5.9). As a monodentate ligand, azide binds through one of the two terminal nitrogen atoms, i.e. M-N=N=N. Azide is a "pure" sigma donor. It is classified as an X ligand in the Covalent bond classification method. In the usual electron counting method, it is a one-electron ligand.

The N3 unit is linear or nearly so. The M-N-N angles are quite bent. Azide functions as a bridging ligand via two bonding modes. Commonly the metals share the same nitrogen ("N-diazonium" mode). Less common is the motif M-N=N=N-M, illustrated by [Cu(N3)(PPh3)2]2.

General synthetic methods

Traditionally, metal azide complexes are prepared by salt metathesis, e.g. the reaction of metal chlorides with sodium azide. In some cases, trimethylsilyl azide is employed as the azide source. Another popular route include acid-base reactions hydrazoic acid HN3 and either hydrido or lewis base complexes. Still other methods rely on halide-azide exchange with trimethylsilyl azide SiMe3N3 with the metal fluorides as incomplete halide/azide exchange is often seen when using the chloride derivatives.{{Cite journal |last1=Portius |first1=Peter |last2=Davis |first2=Martin |date=2013-03-01 |title=Recent developments in the chemistry of homoleptic azido complexes of the main group elements |url=https://www.sciencedirect.com/science/article/pii/S001085451200241X |journal=Coordination Chemistry Reviews |series=Recent Developments in Main Group Chemistry |language=en |volume=257 |issue=5 |pages=1011–1025 |doi=10.1016/j.ccr.2012.09.019 |issn=0010-8545|url-access=subscription }}

Homoleptic complexes

File:Nb(N3)7.png

Many homoleptic complexes (with only one kind of ligand) are known. Coordination numbers range from 2 (e.g., [Au(N3)2]) to 7 (e.g., [W(N3)7]). Many homoleptic complexes are octahedral anions of the type [M(N3)6]n-:

  • dianions for tetravalent metals V, Pt, Ti, Zr, Hf
  • trianions for trivalent metals Cr, Fe, Ru, Rh, Ir
  • tetraanions for the divalent Ni

For some metals, homoleptic complexes exist in two oxidation states: [Au(N3)2] vs [Au(N3)4] and [Pt(N3)6]2- vs [Pt(N3)4]2-.

Binary azide compounds can take on several structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides".{{Cite journal |last1=Ribas |first1=Joan |last2=Escuer |first2=Albert |last3=Monfort |first3=Montserrat |last4=Vicente |first4=Ramon |last5=Cortés |first5=Roberto |last6=Lezama |first6=Luis |last7=Rojo |first7=Teófilo |date=1999-10-01 |title=Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior |url=https://www.sciencedirect.com/science/article/pii/S001085459900051X |journal=Coordination Chemistry Reviews |language=en |volume=193-195 |pages=1027–1068 |doi=10.1016/S0010-8545(99)00051-X |issn=0010-8545|url-access=subscription }}  Reactivity studies of azide compounds are relatively limited due to how sensitive they can be.

= Group 3 =

Neutral unsolvated group 3 polyazide is only known for divalent europium(II) compound, Eu(N3)2.Thomas G. Müller; Friedrich Karau; Wolfgang Schnick; Florian Kraus. A New Route to Metal Azides. Angewandte Chemie International Edition. 2014. {{doi|10.1002/anie.201404561}} Attempts to react lanthanide hydroxides with HN3 result in their basic azides, Ln(OH)(N3)2 or Ln(OH)2N3.Kati Rosenstengel, Axel Schulz, Oliver Niehaus, Oliver Janka, Rainer Pöttgen, Alexander Villinger. Binary Polyazides of Cerium and Gadolinium. European Journal of Inorganic Chemistry. 2017. {{doi|10.1002/ejic.201701408}}.

= Group 4 =

Group 4 polyazides of the formula M(N3)4 are predicted to have linear or near linear M-N-N angles unlike their main group counterparts which are predicted to have bent M-N-N angles.{{Cite journal |last1=Li |first1=Qian Shu |last2=Duan |first2=Hong Xia |date=2005-10-01 |title=Density Functional Theoretical Study of a Series of Binary Azides M(N 3 ) n ( n = 3, 4) |url=https://pubs.acs.org/doi/10.1021/jp052726t |journal=The Journal of Physical Chemistry A |language=en |volume=109 |issue=40 |pages=9089–9094 |doi=10.1021/jp052726t |pmid=16332016 |bibcode=2005JPCA..109.9089L |issn=1089-5639|url-access=subscription }} This couldn’t be proved in the case of Ti(N3)4, owing to difficulty in crystallization.{{Cite journal |last1=Haiges |first1=Ralf |last2=Boatz |first2=Jerry A. |last3=Schneider |first3=Stefan |last4=Schroer |first4=Thorsten |last5=Yousufuddin |first5=Muhammed |last6=Christe |first6=Karl O. |date=2004-06-14 |title=The Binary Group 4 Azides[Ti(N3)4],[P(C6H5)4][Ti(N3)5], and[P(C6H5)4]2[Ti(N3)6] and on Linear TiNNN Coordination |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.200454156 |journal=Angewandte Chemie International Edition |language=en |volume=43 |issue=24 |pages=3148–3152 |doi=10.1002/anie.200454156 |pmid=15199563 |issn=1433-7851|url-access=subscription }} However, incorporation of large spacer counterions or N-donor adducts makes the compounds far easier to work with. In the cases of [PPh4]2[M(N3)6] (M=Ti, Zr, Hf), only the axial ligands exhibit near linear M-N-N angles whereas the equatorial ligands are closer to bent angles.{{Cite journal |last1=Deokar |first1=Piyush |last2=Vasiliu |first2=Monica |last3=Dixon |first3=David A. |last4=Christe |first4=Karl O. |last5=Haiges |first5=Ralf |date=2016-11-07 |title=The Binary Group 4 Azides [PPh 4 ] 2 [Zr(N 3 ) 6 ] and [PPh 4 ] 2 [Hf(N 3 ) 6 ] |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201609195 |journal=Angewandte Chemie International Edition |language=en |volume=55 |issue=46 |pages=14350–14354 |doi=10.1002/anie.201609195|pmid=27735115 |url-access=subscription }} This deviation in theory is also seen in the N-donor adducts.

File:TiN34HOMO.png

The main hypothesis given for why these compounds do not have linear M-N-N angles despite theoretical calculations is that these adducts are not tetrahedral. In the homoleptic tetrahedral compounds, the nitrogen closest to the (+IV) metal center is positioned in such a way that the three valence electron pairs can donate to the vacant d orbitals on the metal and therefore the azido can act as a tridentate donor ligand in which case the expected coordination would be linear. Since the adduct compounds are not tetrahedral, the azido group can only act as a monodentate donor with two sterically active electron pairs which result in a bent M-N-N bond angles.

= Group 5 =

The neutral binary V(IV) azide as well as V(III), V(IV), and V(V) azido ions are known.{{Cite journal |last1=Haiges |first1=Ralf |last2=Boatz |first2=Jerry A. |last3=Christe |first3=Karl O. |date=2010-10-18 |title=The Syntheses and Structure of the Vanadium(IV) and Vanadium(V) Binary Azides V(N3)4, [V(N3)6]2−, and [V(N3)6] |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.200906537 |journal=Angewandte Chemie International Edition |language=en |volume=49 |issue=43 |pages=8008–8012 |doi=10.1002/anie.200906537|pmid=20715219 |url-access=subscription }}{{Cite journal |last1=Gutmann |first1=V. |last2=Leitmann |first2=O. |last3=Scherhaufer |first3=A. |last4=Czuba |first4=H. |date=1967-01-01 |title=Azidokomplexe in nichtwäßrigen Lösungsmitteln, 3. Mitt.: Ti(III), V(III) und Cr(III) in Acetonitril, Propandiol-1,2-carbonat und Trimethylphosphat |url=https://doi.org/10.1007/BF00901117 |journal=Monatshefte für Chemie und verwandte Teile anderer Wissenschaften |language=de |volume=98 |issue=1 |pages=188–199 |doi=10.1007/BF00901117 |issn=1434-4475|url-access=subscription }} Similar to the neutral Ti(IV) azide, V(N3)4 is difficult to study due to high shock and temperature instability. However, [V(N3)6]2- paired with a large, inert counterion is relatively stable and crystalizeses as a near perfect octahedral. In contrast to V(IV), the neutral binary V(V) could not be synthesized and attempts result in the reduction of V(V) to V(IV) with the elimination of N2 gas. Fortunately, the oxidation potentials of anions are lower than that of their parent compounds so [V(N3)6] can be formed. Unlike [V(N3)6]2-, [V(N3)6] is highly shock sensitive and distorted from octahedral symmetry with three long and three short M-N bonds in mer positions.

The neutral binary Nb(N3)5 and Ta(N3)5 also exist, and the acetonitrile adducts of these compounds contain a nearly linear azido trans to the coordinating acetonitrile.{{Cite journal |last1=Haiges |first1=Ralf |last2=Boatz |first2=Jerry A. |last3=Schroer |first3=Thorsten |last4=Yousufuddin |first4=Muhammed |last5=Christe |first5=Karl O. |date=2006-07-17 |title=Experimental Evidence for Linear Metal–Azido Coordination: The Binary Group 5 Azides [Nb(N3)5], [Ta(N3)5], [Nb(N3)6]−, and [Ta(N3)6]−, and 1:1 Acetonitrile Adducts [Nb(N3)5(CH3CN)] and [Ta(N3)5(CH3CN)] |journal=Angewandte Chemie International Edition |language=en |volume=45 |issue=29 |pages=4830–4835 |doi=10.1002/anie.200601060 |pmid=16795097 |issn=1433-7851|doi-access=free }} They represent the first evidence of linear M-N-N bonding. The corresponding anions [Nb(N3)6], [Nb(N3)7]2-, [Ta(N3)6], and [Ta(N3)7]2- are known and accordingly are much less shock sensitive.{{Cite journal |last1=Haiges |first1=Ralf |last2=Boatz |first2=Jerry A. |last3=Yousufuddin |first3=Muhammed |last4=Christe |first4=Karl O. |date=2007-04-13 |title=Monocapped Trigonal-Prismatic Transition-Metal Heptaazides: Syntheses, Properties, and Structures of [Nb(N3)7]2− and [Ta(N3)7]2− |journal=Angewandte Chemie International Edition |language=en |volume=46 |issue=16 |pages=2869–2874 |doi=10.1002/anie.200604520|pmid=17348060 |doi-access=free }} The structure of the hexaazido monoanions are similar to other heptaazido monoanions with bent azido ligands despite being predicted to have perfect S6 symmetry in the gas phase for [Nb(N3)6]. The heptaazido dianions possess monocapped triangular-prismatic 1/4/2 structures unlike the actinide trianion [U(N3)7]3- which crystallizes as a monocapped octahedron or pentagonal bipyramid. Several N-donor adducts are known to exist as well.{{Cite journal |last1=Haiges |first1=Ralf |last2=Deokar |first2=Piyush |last3=Christe |first3=Karl O. |date=2014-05-19 |title=Coordination Adducts of Niobium(V) and Tantalum(V) Azide M(N 3 ) 5 (M=Nb, Ta) with Nitrogen Donor Ligands and their Self-Ionization |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201402775 |journal=Angewandte Chemie International Edition |language=en |volume=53 |issue=21 |pages=5431–5434 |doi=10.1002/anie.201402775|pmid=24756882 |url-access=subscription }} Reactions of the neutral binary NbF5 and TaF5 in the presence of Me3SiN3 with N-donors containing small bite angles such as 2,2’-bipyridine or 1,10-phenanthroline result in self ionization products of the type [M(N3)4L2]+[M(N3)6] (L= N-donor) whereas N-donors containing large bite angles such as 3,3’-bipryidine or 4,4’-bipyridine produces the neutral pentaazide adducts M(N3)5•L (L=N-donor).

= Group 6 =

Both Mo(N3)6 and W(N3)6 have been synthesized, and W(N3)6 is stable enough to grow single crystals.{{Cite journal |last1=Haiges |first1=Ralf |last2=Boatz |first2=Jerry A. |last3=Bau |first3=Robert |last4=Schneider |first4=Stefan |last5=Schroer |first5=Thorsten |last6=Yousufuddin |first6=Muhammed |last7=Christe |first7=Karl O. |date=2005-03-11 |title=Polyazide Chemistry: The First Binary Group 6 Azides, Mo(N3)6, W(N3)6, [Mo(N3)7]?, and [W(N3)7]?, and the [NW(N3)4]? and [NMo(N3)4]? Ions |journal=Angewandte Chemie International Edition |language=en |volume=44 |issue=12 |pages=1860–1865 |doi=10.1002/anie.200462740 |pmid=15723363 |issn=1433-7851|doi-access=free }} Contrary to group 4 and group 5 binary azido compounds, the anionic [Mo(N3)7] and [W(N3)7] are less stable and more sensitive to handle than their neutral parent compounds.  Upon warming solutions of the heptaazido anions in either MeCN or SO2 to room temperature, the tetraazido nitrido ions [NMo(N3)4] and [NW(N3)4] are formed with elimination of N2.

= Group 7 =

File:Binding modes.png

The first Mn polyazide compound was prepared by Wöhler et al. in 1917 by reaction of MnCO3 with HN3 to form Mn(N3)2.{{Cite journal |last1=Dehnicke |first1=K. |last2=Dubgen |first2=R. |date=1978 |title=Die Reaktionen des Jodazids mit Metallcarbonylen |url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.19784440106 |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=444 |issue=1 |pages=61–70 |doi=10.1002/zaac.19784440106 |issn=0044-2313|url-access=subscription }} Many divalent Mn azide salts have been synthesized.{{Cite journal |last1=Goher |first1=Mohamed A. S. |last2=Cano |first2=Joan |last3=Journaux |first3=Yves |last4=Abu-Youssef |first4=Morsy A. M. |last5=Mautner |first5=Franz A. |last6=Escuer |first6=Albert |last7=Vicente |first7=Ramon |date=2000-03-03 |title=Synthesis, Structural Characterisation, and Monte Carlo Simulation of the Magnetic Properties of the 3D-Stacked Honeycomb Csn[{Mn(N3)3}n] and the Irregular Double Chain [{N(C2H5)4}n][{Mn2(N3)5(H2O)}n] |url=https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1521-3765(20000303)6:5%3C778::AID-CHEM778%3E3.0.CO;2-P |journal=Chemistry - A European Journal |volume=6 |issue=5 |pages=778–784 |doi=10.1002/(SICI)1521-3765(20000303)6:5<778::AID-CHEM778>3.0.CO;2-P |pmid=10826599 |issn=0947-6539|url-access=subscription }} 1D chains are formed when 2,2’-bipyridine, a bidentate ligand, is used as the counter ion in the reaction between Mn(ClO4)2 • 6H2O and excess NaN3.{{Cite journal |last1=Cortés |first1=Roberto |last2=Lezama |first2=Luis |last3=Rojo |first3=Teófilo |last4=Arriortua |first4=M. Isabel |last5=Pizarro |first5=J. Luis |last6=Solans |first6=Xavier |date=1995-01-03 |title=Alternating Ferro- and Antiferromagnetic Interactions in a MnII Chain with Alternating End-On and End-to-End Bridging Azido Ligands |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.199424881 |journal=Angewandte Chemie International Edition in English |language=en |volume=33 |issue=2324 |pages=2488–2489 |doi=10.1002/anie.199424881 |issn=0570-0833|url-access=subscription }} This results in a chain with alternating EE and EO bridges which predictably gives alternating antiferromagnetic-ferromagnetic coupling.{{Cite journal |last1=Mautner |first1=Franz A. |last2=Hanna |first2=Samy |last3=Cortés |first3=Roberto |last4=Lezama |first4=Luis |last5=Barandika |first5=M. Gotzone |last6=Rojo |first6=Teófilo |date=1999-10-01 |title=Crystal Structure and Spectroscopic and Magnetic Properties of the Manganese(II) and Copper(II) Azido−Tetramethylammonium Systems |url=https://pubs.acs.org/doi/10.1021/ic981373s |journal=Inorganic Chemistry |language=en |volume=38 |issue=21 |pages=4647–4652 |doi=10.1021/ic981373s |pmid=11671186 |issn=0020-1669|url-access=subscription }}{{Cite journal |last1=Ma |first1=Yu |last2=Cheng |first2=Ai-Ling |last3=Sun |first3=Wei-Wei |last4=Zhang |first4=Jiang-Yong |last5=Gao |first5=En-Qing |date=2009-05-01 |title=Homoleptic manganese(II)–azide layer: Synthesis, structural characterization and magnetic properties |url=https://www.sciencedirect.com/science/article/pii/S1387700309001622 |journal=Inorganic Chemistry Communications |language=en |volume=12 |issue=5 |pages=412–416 |doi=10.1016/j.inoche.2009.03.005 |issn=1387-7003|url-access=subscription }} Another 2D structure is accessed via the reaction of (PPh4)2MnCl2 with AgN3 to form the [PPh4]2[Mn(N3)4].{{Cite journal |last1=Steiner |first1=Klaus |last2=Willing |first2=Wolfgang |last3=Müller |first3=Ulrich |last4=Dehnicke |first4=Kurt |date=1987 |title=Azidokomplexe von Mangan(II) und Cobalt(II) Die Kristallstrukturen von (PPh4)2[Mn(N3)4] und (PPh4)2[Co(N3)3Cl] |url=https://onlinelibrary.wiley.com/doi/10.1002/zaac.19875551202 |journal=Zeitschrift für anorganische und allgemeine Chemie |language=de |volume=555 |issue=12 |pages=7–15 |doi=10.1002/zaac.19875551202 |issn=0044-2313|url-access=subscription }}  

The first example of a 3D azido compound was [N(CH3)4][Mn(N3)3].{{Cite journal |last1=Mautner |first1=Franz A. |last2=Cortés |first2=Roberto |last3=Lezama |first3=Luis |last4=Rojo |first4=Teófilo |date=1996-01-19 |title=[N(CH3)4][Mn(N3)3]: A Compound with a Distorted Perovskite Structure through Azido Ligands |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.199600781 |journal=Angewandte Chemie International Edition in English |language=en |volume=35 |issue=1 |pages=78–80 |doi=10.1002/anie.199600781 |issn=0570-0833|url-access=subscription }} This compound has a pseudo-perovskite structure with [N(CH3)4]+ ions in the cavities between the Mn centers. The azido moieties are arranged in an EE fashion, and indeed, this compound exhibits the expected antiferromagnetic behavior. The cesium analogue Cs[Mn(N3)3] is synthesized in a similar manner. For each 6 coordinate Mn, four of the azido linkages are EE and two are EO instead of all six being EE. This arrangement results in a honeycomb-like shape and a rare example of alternating ferro-antiferromagnetic interactions in 3D solid.

Examples of manganese azido compounds in higher oxidation states are rare. The triazide acetonitrile adduct can be prepared using the fluoride exchange route to give Mn(N3)3CN as a dark red shock sensitive compound.{{Cite journal |last1=Haiges |first1=Ralf |last2=Buszek |first2=Robert J. |last3=Boatz |first3=Jerry A. |last4=Christe |first4=Karl O. |date=2014-07-28 |title=Preparation of the First Manganese(III) and Manganese(IV) Azides |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201404735 |journal=Angewandte Chemie International Edition |language=en |volume=53 |issue=31 |pages=8200–8205 |doi=10.1002/anie.201404735|pmid=25044947 |url-access=subscription }} Upon addition of PPh4N3 the compound disproportionates into an insensitive mixture of [PPh4]2[Mn(N3)2] and [PPh4]2[Mn(N3)6]. The Mn(IV) salt can be prepared on its own by using Cs2MnF6 as the starting material to give the highly explosive Cs2[Mn(N3)6].

= Group 8 =

File:Feanti.png

Pentaazidoiron (III) ion [Fe(N3)5]2- can be made by treating iron(III) salts with sodium azide.{{Cite journal |last1=Beck |first1=Wolfgang |last2=Fehlhammer |first2=Wolf Peter |last3=Pöllmann |first3=Peter |last4=Schuierer |first4=Erich |last5=Feldl |first5=Klaus |date=1967 |title=Darstellung, IR- und Elektronenspektren von Azido-Metall-Komplexen |url=https://onlinelibrary.wiley.com/doi/10.1002/cber.19671000731 |journal=Chemische Berichte |language=en |volume=100 |issue=7 |pages=2335–2361 |doi=10.1002/cber.19671000731 |issn=0009-2940|url-access=subscription }}{{Cite journal |last1=Drummond |first1=J. |last2=Wood |first2=J. S. |date=1969 |title=The Structure of a Five-Co-ordinate Complex of Iron; the Penta-Azidoiron(III) Ion, Fe(N3)52- |url=http://xlink.rsc.org/?DOI=c29690001373 |journal=Journal of the Chemical Society D: Chemical Communications |language=en |issue=23 |pages=1373 |doi=10.1039/c29690001373 |issn=0577-6171|url-access=subscription }} An iron azide reagent can be generated in situ.{{Cite journal |last1=Suzuki |first1=Akira |last2=IShidoya |first2=Masahiro |last3=Tabata |first3=Masayoshi |date=1976 |title=Reaction of Organoboranes with Iron(III) Azide in the Presence of Hydrogen Peroxide. A Novel Synthesis of Azidoalkanes from Alkenes via Hydroboration |url=http://dx.doi.org/10.1055/s-1976-24160 |journal=Synthesis |volume=1976 |issue=10 |pages=687–689 |doi=10.1055/s-1976-24160 |issn=0039-7881|url-access=subscription }} NaN3 and iron (III) sulfate Fe2(SO4)3 are combined in methanol and added to an organoborane followed by slow addition of 30% hydrogen peroxide, presumably forming Fe(N3)3. When combined with alkenes, the equivalent of hydrogen azide add in an anti-Markovnikov fashion.{{Citation |last=White |first=Andrew D. |title=Iron(III) Azide |date=2001-04-15 |url=http://dx.doi.org/10.1002/047084289x.ri053 |encyclopedia=Encyclopedia of Reagents for Organic Synthesis |place=Chichester, UK |publisher=John Wiley & Sons, Ltd |doi=10.1002/047084289x.ri053 |isbn=0471936235 |access-date=2022-12-13|url-access=subscription }}

[n-Bu4N]3[Ru(N3)6] is prepared by treating K2[RuIVCl6] with NaN3.{{Cite journal |last1=Schmidtke |first1=Hans-Herbert. |last2=Garthoff |first2=Dieter. |date=1967 |title=The Electronic Spectra of Some Noble Metal Azide Complexes |url=https://pubs.acs.org/doi/abs/10.1021/ja00982a007 |journal=Journal of the American Chemical Society |language=en |volume=89 |issue=6 |pages=1317–1321 |doi=10.1021/ja00982a007 |issn=0002-7863|url-access=subscription }} N2 gas is liberated in this reaction, which involves reduction of Ru(IV) to Ru(III).

= Group 9 =

Tetraazido cobalt(II) compounds have been isolated as both the tetraphenylphosphonium and tetraphenylarsonium salts from solutions of cobalt sulfate with a 15 time sexcess of NaN3 to yield [Ph4P]2[Co(N3)4] and [Ph4As]2[Co(N3)4] respectively.{{Cite journal |last=Senise |first=Paschoal |date=1959 |title=On the Reaction between Cobalt(II) and Azide Ions in Aqueous and Aqueous-organic Solutions1 |url=http://dx.doi.org/10.1021/ja01525a020 |journal=Journal of the American Chemical Society |volume=81 |issue=16 |pages=4196–4199 |doi=10.1021/ja01525a020 |issn=0002-7863|url-access=subscription }} The autooxidation of solutions of  [Co(N3)4]2- can be used as a colorimetric spot test for the presence of sulfite ions.{{Cite journal |last=Senise |first=Paschoal |date=1957-09-01 |title=Spot test for sulfites based on the induced oxidation of cobalt-azide solutions |url=https://doi.org/10.1007/BF01236544 |journal=Microchimica Acta |language=en |volume=45 |issue=5 |pages=640–643 |doi=10.1007/BF01236544 |s2cid=98339990 |issn=1436-5073|url-access=subscription }}

Tetrabutylammonium salts of rhodium(III) and iridium(III) azides are known and are prepared by reacting a large excess of NaN3 in an aqueous solution with the corresponding Na3[MCl6] • 12H2O metal chloride salt to form [n-Bu4N]3[Rh(N3)6] and [n-Bu4N]3[Ir(N3)6].

= Group 10 =

The binary nickel azide Ni(N3)2 has been prepared by distilling HN3 onto nickel carbonate.{{Cite journal |last1=Sood |first1=R. K. |last2=Nya |first2=A. E. |last3=Etim |first3=E. S. |date=1981 |title=Thermal decomposition of nickel azide |url=http://dx.doi.org/10.1007/bf01915269 |journal=Journal of Thermal Analysis |volume=22 |issue=2 |pages=231–237 |doi=10.1007/bf01915269 |s2cid=95478362 |issn=0022-5215|url-access=subscription }} Samples of Ni(N3)2 decompose upon heating .

[Pd(N3)4]2- anions are square planar and the degree of interaction between the anion and its corresponding cation can be determined by the amount of deviation in the torsion angles from the ideal geometry.{{Cite journal |last1=Beck |first1=Wolfgang |last2=Fehlhammer |first2=Wolf Peter |last3=Feldl |first3=Klaus |last4=Klpötke |first4=Thomas M. |last5=Kramer |first5=Gernot |last6=Mayer |first6=Peter |last7=Piotrowski |first7=Holger |last8=Pöllman |first8=Peter |last9=Ponikwar |first9=Walter |last10=Schütt |first10=Thomas |last11=Schuierer |first11=Erich |last12=Vogt |first12=Martin |date=2001 |title=Crystal Structures of (PPh3)2Pd(N3)2, (AsPh3)2Pd(N3)2, (2-Chloropyridine)2Pd(N3)2, [(AsPh4)2][Pd2(N3)4Cl2], [(PNP)2][Pd(N3)4], [(AsPh4)2][Pt(N3)4] 2H2O, and [(AsPh4)2][Pt(N3)6] |url=https://doi.org/10.1002/1521-3749(200108)627:8<1751::AID-ZAAC1751>3.0.CO;2-5 |journal=Zeitschrift für anorganische und allgemeine Chemie |volume=627 |issue=8 |pages=1751–1758 |doi= 10.1002/1521-3749(200108)627:8<1751::AID-ZAAC1751>3.0.CO;2-5|issn=0044-2313|url-access=subscription }} Various platinates [Pt(N3)4]2- and [Pt(N3)6]4- are known and are prepared from Pt chloride salts with NaN3. Pt(II) salts tend to be far less stable than the Pt(IV) versions, and they either decompose fairly rapidly upon standing or explode.{{Cite journal |last1=Neumüller |first1=Bernhard |last2=Schmock |first2=Fritjof |last3=Schlecht |first3=Sabine |last4=Dehnicke |first4=Kurt |date=2000 |title=Die Kristallstrukturen der Azido-Platinate (AsPh4)2[Pt(N3)4] und (AsPh4)2[Pt(N3)6] |url=https://doi.org/10.1002/1521-3749(200008)626:8<1792::AID-ZAAC1792>3.0.CO;2-U |journal=Zeitschrift für anorganische und allgemeine Chemie |volume=626 |issue=8 |pages=1792–1796|doi=10.1002/1521-3749(200008)626:8<1792::AID-ZAAC1792>3.0.CO;2-U |url-access=subscription }} Their sensitivity in part has been explained by poor crystal packing.

= Group 11 =

Both copper(I) and copper(II) azides are known. The binary copper(I) azide, CuN3, which is white, is a one-dimensional polymer.{{Cite journal |last=Wilsdorf |first=H. |date=1948-07-02 |title=Die Kristallstruktur des einwertigen Kupferazids, CuN3 |url=https://scripts.iucr.org/cgi-bin/paper?S0365110X48000314 |journal=Acta Crystallographica |language=de |volume=1 |issue=3 |pages=115–118 |doi=10.1107/S0365110X48000314 |issn=0365-110X|doi-access=free |bibcode=1948AcCry...1..115W |url-access=subscription }} Molecular Copper (II) azides include salts of [Cu(N3)4]2- and [Cu(N3)6]2-.{{Cite journal |last1=Goher |first1=Mohamed A. S. |last2=Abdou |first2=Azza E. H. |last3=Abu-Youssef |first3=Morsy A. M. |last4=Mautner |first4=Franz A. |date=2001-02-01 |title=Bis-(tetraethylammonium)[tetraazidocuprate(II)] and catena-di-μ-1,1-azido-[di-μ-1,1-azido-bis-(2,4-dimethylpyridine)dicopper(II)] |url=https://doi.org/10.1023/A:1007195015645 |journal=Transition Metal Chemistry |language=en |volume=26 |issue=1 |pages=39–43 |doi=10.1023/A:1007195015645 |s2cid=92350747 |issn=1572-901X|url-access=subscription }} {[Cu(N3)3]}n forms 1D chains wherein octahedral Cu(II) centers are linked by both EE and EO bridging azides. All copper azides are explosive but their sensitivities vary widely from the parent azides CuN3 and Cu(N3)2 which are extremely sensitive to the ions paired with large countercations that are practically insensitive.{{Cite book |url=https://www.worldcat.org/oclc/2985662 |title=Physics and chemistry of the inorganic azides |date=1977 |publisher=Plenum Press |editor1=Harry David Fair |editor2=Raymond F. Walker |isbn=0-306-37076-X |location=New York |oclc=2985662}}

Silver (I) azide is a well known explosive compound and has been demonstrated to form a 2D coordination polymer with square planar Ag+ ions surrounded by azido ligands in an EE fashion.{{Cite journal |last1=Schmidt |first1=Carsten L. |last2=Dinnebier |first2=Robert |last3=Wedig |first3=Ulrich |last4=Jansen |first4=Martin |date=2007-02-01 |title=Crystal Structure and Chemical Bonding of the High-Temperature Phase of AgN 3 |url=https://pubs.acs.org/doi/10.1021/ic061963n |journal=Inorganic Chemistry |language=en |volume=46 |issue=3 |pages=907–916 |doi=10.1021/ic061963n |pmid=17257034 |issn=0020-1669|url-access=subscription }} Slow ramping of temperature from 150 °C to 251 °C results in melting and slow decomposition but rapid heating to 300 °C results in an explosion.

Gold(III) azide is known as the tetraethylammonium salt [Et4N][Au(N3)4] and also adopts a square planar structure. However unlike the silver azide, the gold azide is not stable at room temperature and will decompose after a few days and its metal azide bonds have significant covalent character.

= Group 12 =

While Zn(N3)2 has been known since the late 1890s, solvent free Zn(N3)2 was isolated for the first time in 2016 from a dry ethereal solution of HN3 and Et2Zn in n-hexane. Zn(N3)2 crystallizes in three different polymorphs α-Zn(N3)2 and the labile β-Zn(N3)2 and γ-Zn(N3)2 forms.{{Cite journal |last1=Schulz |first1=Axel |last2=Villinger |first2=Alexander |date=2016-01-08 |title=Binary Zinc Azides |url=http://dx.doi.org/10.1002/chem.201504524 |journal=Chemistry - A European Journal |volume=22 |issue=6 |pages=2032–2038 |doi=10.1002/chem.201504524 |pmid=26749253 |issn=0947-6539|url-access=subscription }}

The first mercury (I) azide was realized by Curtius in 1890 by combining aqueous mercury(I) salts with alkali metal azides and by combining HN3 with elemental mercury to produce Hg2(N3)2.{{Cite journal |last1=Nockemann |first1=Peter |last2=Meyer |first2=Gerd |date=2002 |title=Bildung von NH4[Hg3(NH)2](NO3)3 und Umwandlung in [Hg2N](NO3) |url=http://dx.doi.org/10.1002/1521-3749(200212)628:12<2709::aid-zaac2709>3.0.co;2-p |journal=Zeitschrift für anorganische und allgemeine Chemie |volume=628 |issue=12 |pages=2709–2714 |doi=10.1002/1521-3749(200212)628:12<2709::aid-zaac2709>3.0.co;2-p |issn=0044-2313|url-access=subscription }}{{Cite journal |last1=Lund |first1=Henrik |last2=Oeckler |first2=Oliver |last3=Schröder |first3=Thorsten |last4=Schulz |first4=Axel |last5=Villinger |first5=Alexander |date=2013-08-26 |title=Mercury Azides and the Azide of Millon's Base |url=http://dx.doi.org/10.1002/anie.201305545 |journal=Angewandte Chemie International Edition |volume=52 |issue=41 |pages=10900–10904 |doi=10.1002/anie.201305545 |pmid=24038779 |issn=1433-7851|url-access=subscription }} Both mercury (I) and mercury(II) azides can be easily prepared by mixing the respective mercury nitrates with sodium azide in aqueous solution at roomtemperature. The mercury (II) azide Hg(N3)2 exists in two polymorphs α-Hg(N3)2 and β-Hg(N3)2. The β form is very labile and quickly turns into the α polymorphs at room temperature. However, the β polymorph can prepared in analogy to β-Pb(N3)2 by slow diffusion of aqueous NaN3 into a solution of Hg(NO3)2 separated by a layer of aqueous NaNO3, but crystals nearly always explode during formation leading to a mixture of α and β polymorphs.

Binary cadmium azide Cd(N3)2 can be prepared from CdCO3 and aqueous HN3.{{Cite journal |last1=Karau |first1=Friedrich |last2=Schnick |first2=Wolfgang |date=2005 |title=Darstellung und Kristallstruktur von Cadmiumazid Cd(N3)2 |url=http://dx.doi.org/10.1002/zaac.200500226 |journal=Zeitschrift für anorganische und allgemeine Chemie |volume=631 |issue=12 |pages=2315–2320 |doi=10.1002/zaac.200500226 |issn=0044-2313|url-access=subscription }} However, it is structural unrelated to the mercury or zinc anaolgues and is based on repeat units of Cd2(N3)10 double octahedrals.

=Mixed ligand complexes=

File:PdN3(CH3)(PMe3)2.svgs.{{cite journal |doi=10.1016/S0022-328X(96)06908-2|title=Preparation and Reactions of Methylpalladium(II) and -Platinum(II) Azido Complexes. The Crystal Structure of trans-PdMe(N3)(PMe3)2 and trans-PdMe[CN4(C6H11)](PMe3)2|year=1997|last1=Kim|first1=Yong-Joo|last2=Kim|first2=Dae-Hun|last3=Lee|first3=Jae-Young|last4=Lee|first4=Soon-W.|journal=Journal of Organometallic Chemistry|volume=538|issue=1–2|pages=189–197}}]]

Azide forms myriad mixed ligand complexes. Examples include Zn(N3)2(NH3)2 and (C5H5)2Ti(N3)2.{{Cite journal |last1=Saal |first1=Thomas |last2=Deokar |first2=Piyush |last3=Christe |first3=Karl O. |last4=Haiges |first4=Ralf |date=2019-05-15 |title=The Binary Group 4 Azide Adducts [(bpy)Ti(N3)4], [(phen)Ti(N3)4], [(bpy)2Zr(N3)4]2·bpy, and [(bpy)2Hf(N3)4]2·bpy |url=https://onlinelibrary.wiley.com/doi/10.1002/ejic.201900334 |journal=European Journal of Inorganic Chemistry |language=en |volume=2019 |issue=18 |pages=2388–2391 |doi=10.1002/ejic.201900334 |s2cid=132294068 |issn=1434-1948|url-access=subscription }}

Reactions

A characteristic reaction of azide complexes and compounds) is degradation via loss of nitrogen gas. The stoichiometry for a diazide compound is:

:{{chem2|M(N3)2 -> 2 M + 3 N2}}

The process often occurs explosively.

Azide ligands are react with nitrosonium to give nitrous oxide. This reaction is used to generate coordinatively unsaturated complexes.{{cite journal |doi=10.1021/ic50051a038|title=The Mechanism of Substitution Reactions of Pentamminecobalt(III) Complexes. Product Distributions in the Induced Aquation of Some [Co(NH3)5X]2+ Ions in the Presence of Added Anions|year=1967|last1=Buckingham|first1=David A.|last2=Olsen|first2=I. I.|last3=Sargeson|first3=Alan M.|last4=Satrapa|first4=H.|journal=Inorganic Chemistry|volume=6|issue=5|pages=1027–1032}}

:[Co(NH3)5N3]2+ + NO+ + H2O → [Co(NH3)5(H2O)]3+ + N2O + N2

This approach was used to prepare the previously elusive dicationic complex pentamminecobalt(III) perchlorate, {{chem2|[Co(NH3)5(OClO3)](2+)}}.{{cite journal |doi=10.1021/ic50153a059 |title=Trapping of Labile Cobalt(III) Complexes. Characterization of the Perchloratopentaamminecobalt(III) Ion |date=1975 |last1=Harrowfield |first1=J. Macb. |last2=Sargeson |first2=A. M. |last3=Singh |first3=B. |last4=Sullivan |first4=J. C. |journal=Inorganic Chemistry |volume=14 |issue=11 |pages=2864–2865 }}

See also

References

{{Coordination complexes}}

Category:Ligands

Category:Azides