truncated pentakis dodecahedron
class=wikitable align="right"
!bgcolor=#e7dcc3 colspan=2|Truncated pentakis dodecahedron | |
align=center colspan=2|240px | |
bgcolor=#e7dcc3|Conway notation | [https://levskaya.github.io/polyhedronisme/?recipe=A10tkD tkD] |
bgcolor=#e7dcc3|Goldberg polyhedron | GPV(3,0) or {5+,3}3,0 |
bgcolor=#e7dcc3|Fullerene | C180[http://www.nanotube.msu.edu/fullerene/fullerene.php?C=180 C180 Isomers] |
bgcolor=#e7dcc3|Faces | 92: 12 pentagons 20+60 hexagons |
bgcolor=#e7dcc3|Edges | 270 (2 types) |
bgcolor=#e7dcc3|Vertices | 180 (2 types) |
bgcolor=#e7dcc3|Vertex configuration | (60) 5.6.6 (120) 6.6.6 |
bgcolor=#e7dcc3|Symmetry group | Icosahedral (Ih) |
bgcolor=#e7dcc3|Dual polyhedron | Hexapentakis truncated icosahedron |
bgcolor=#e7dcc3|Properties | convex |
The truncated pentakis dodecahedron is a convex polyhedron constructed as a truncation of the pentakis dodecahedron. It is Goldberg polyhedron GV(3,0), with pentagonal faces separated by an edge-direct distance of 3 steps.
Related polyhedra
See also
- Near-miss Johnson solid
- [https://levskaya.github.io/polyhedronisme/?recipe=tkC&palette=%23ffffff Truncated tetrakis cube]
References
{{reflist}}
- {{citation | last1 = Deza | first1 = A. | last2 = Deza | first2 = M. | author2-link = Michel Deza | last3 = Grishukhin | first3 = V. | title = Fullerenes and coordination polyhedra versus half-cube embeddings | journal = Discrete Mathematics | volume = 192 | issue = 1 | year = 1998 | pages = 41–80 | url = http://www.ehess.fr/centres/cams/papers/144.ps.gz | doi = 10.1016/S0012-365X(98)00065-X | url-status = dead | archiveurl = https://web.archive.org/web/20070206064633/http://www.ehess.fr/centres/cams/papers/144.ps.gz | archivedate = 2007-02-06 | doi-access = free }}.
- Antoine Deza, Michel Deza, Viatcheslav Grishukhin, Fullerenes and coordination polyhedra versus half-cube embeddings, 1998 PDF [http://www.cas.mcmaster.ca/~deza/dm1998.pdf]
External links
- [http://www.georgehart.com/virtual-polyhedra/conway_notation.html VTML polyhedral generator] Try "tkD" (Conway polyhedron notation)