truncated tetrapentagonal tiling
{{Short description|A uniform tiling of the hyperbolic plane}}
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U54_012}}
In geometry, the truncated tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1,2{4,5} or tr{4,5}.
Symmetry
File:Truncated_tetrapentagonal_tiling_with_mirrors.png
There are four small index subgroup constructed from [5,4] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
{{-}}
A radical subgroup is constructed [5*,4], index 10, as [5+,4], (5*2) with gyration points removed, becoming orbifold (*22222), and its direct subgroup [5*,4]+, index 20, becomes orbifold (22222).
class="wikitable collapsible collapsed"
!colspan=12| Small index subgroups of [5,4] |
align=center
!1 !colspan=2|2 !10 |
align=center
!Diagram |
Coxeter (orbifold) ![5,4] = {{CDD|node_c1|5|node_c1|4|node_c2}} ![5,4,1+] = {{CDD|node_c1|5|node_c1|4|node_h0}} = {{CDD|node_c1|split1-55|nodeab_c1}} ![5+,4] = {{CDD|node_h2|5|node_h2|4|node_c2}} ![5*,4] = {{CDD|node_g|5g|3sg|node_g|4|node_c2}} |
---|
align=center
!Colspan=5|Direct subgroups |
align=center
!Index !2 !colspan=2|4 !20 |
align=center
!Diagram |colspan=2|160px |
Coxeter (orbifold) ![5,4]+ = {{CDD|node_h2|5|node_h2|4|node_h2}} !colspan=2|[5+,4]+ = {{CDD|node_h2|5|node_h2|4|node_h0}} = {{CDD|node_h2|split1-55|branch_h2h2|label2}} ![5*,4]+ = {{CDD|node_g|5g|3sg|node_g|4|node_h0}} |
Related polyhedra and tiling
{{Omnitruncated4 table}}
{{Omnitruncated_symmetric_table}}
{{Order 5-4 tiling table}}
See also
{{Commons category|Uniform tiling 4-8-10}}
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|first=H. S. M.|last=Coxeter|authorlink=H. S. M. Coxeter|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://bork.hampshire.edu/~bernie/hyper/ Hyperbolic and Spherical Tiling Gallery]
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}
{{hyperbolic-geometry-stub}}