twisted diagonal (simplicial sets)

{{Short description|Construction for simplicial sets}}

{{Other uses|Twisted diagonal (disambiguation)}}

In higher category theory in mathematics, the twisted diagonal of a simplicial set (for ∞-categories also called the twisted arrow ∞-category) is a construction, which generalizes the twisted diagonal of a category to which it corresponds under the nerve construction. Since the twisted diagonal of a category is the category of elements of the Hom functor, the twisted diagonal of an ∞-category can be used to define the Hom functor of an ∞-category.

Twisted diagonal with the join operation

For a simplicial set A define a bisimplicial set and a simplicial set with the opposite simplicial set and the join of simplicial sets by:Cisinski 2019, 5.6.1.

: \mathbf{Tw}(A)_{m,n}

=\operatorname{Hom}((\Delta^m)^\mathrm{op}*\Delta^n,A),

: \operatorname{Tw}(A)

=\delta^*(\mathbf{Tw}(A)).

The canonical morphisms (\Delta^m)^\mathrm{op}\rightarrow(\Delta^m)^\mathrm{op}*\Delta^n\leftarrow\Delta^n induce canonical morphisms \mathbf{Tw}(A)\rightarrow A^\mathrm{op}\boxtimes A and \operatorname{Tw}(A)\rightarrow A^\mathrm{op}\times A.

Twisted diagonal with the diamond operation

For a simplicial set A define a bisimplicial set and a simplicial set with the diamond operation by:Cisinski 2019, 5.6.10.

: \mathbf{Tw}_\diamond(A)_{m,n}

=\operatorname{Hom}((\Delta^m)^\mathrm{op}\diamond\Delta^n,A),

: \operatorname{Tw}_\diamond(A)

=\delta^*(\mathbf{Tw}_\diamond(A)).

The canonical morphisms (\Delta^m)^\mathrm{op}\rightarrow(\Delta^m)^\mathrm{op}\diamond\Delta^n\leftarrow\Delta^n induce canonical morphisms \mathbf{Tw}_\diamond(A)\rightarrow A^\mathrm{op}\boxtimes A and S_\diamond(A)\rightarrow A^\mathrm{op}\times A. The weak categorical equivalence \gamma_{(\Delta^m)^\mathrm{op},\Delta^n}\colon

(\Delta^m)^\mathrm{op}\diamond\Delta^n\rightarrow(\Delta^m)^\mathrm{op}*\Delta^n induces canonical morphisms \mathbf{Tw}(A)\rightarrow\mathbf{Tw}_\diamond(A) and \operatorname{Tw}(A)\rightarrow\operatorname{Tw}_\diamond(A).

Properties

  • Under the nerve, the twisted diagonal of categories corresponds to the twisted diagonal of simplicial sets. Let \mathcal{C} be a small category, then:Kerodon, [https://kerodon.net/tag/03JN Proposition 8.1.1.10.]
  • : N\operatorname{Tw}(\mathcal{C})

=\operatorname{Tw}(N\mathcal{C}).

  • For an ∞-category A, the canonical map \operatorname{Tw}(A)\rightarrow A^\mathrm{op}\times A is a left fibration. Therefore, the twisted diagonal \operatorname{Tw}(A) is also an ∞-category.Cisinski 2019, Proposition 5.6.2.[https://kerodon.net/tag/03JQ Kerodon, Proposition 8.1.1.11.][https://kerodon.net/tag/03JR Kerodon, Corollary 8.1.1.12.]
  • For a Kan complex A, the canonical map \operatorname{Tw}(A)\rightarrow A^\mathrm{op}\times A is a Kan fibration. Therefore, the twisted diagonal \operatorname{Tw}(A) is also a Kan complex.[https://kerodon.net/tag/048H Kerodon, Corollary 8.1.1.13.]
  • For an ∞-category A, the canonical map \mathbf{Tw}_\diamond(A)\rightarrow A^\mathrm{op}\boxtimes A is a left bifibration and the canonical map \operatorname{Tw}_\diamond(A)\rightarrow A^\mathrm{op}\times A is a left fibration. Therefore, the simplicial set \operatorname{Tw}_\diamond(A) is also an ∞-category.Cisinski 2019, Proposition 5.6.12.
  • For an ∞-category A, the canonical morphism \operatorname{Tw}(A)\rightarrow\operatorname{Tw}_\diamond(A) is a fiberwise equivalence of left fibrations over A^\mathrm{op}\times A.Cisinski 2019, Corollary 5.6.14.
  • A functor u\colon A\rightarrow B between ∞-categories A and B is fully faithful if and only if the induced map:
  • : \operatorname{Tw}(A)\rightarrow(A^\mathrm{op}\times A)\times_{B^\mathrm{op}\times B}\operatorname{Tw}(B) is a fiberwise equivalence over A^\mathrm{op}\times A.Cisinski 2019, Corollary 5.6.6.
  • For a functor u\colon A\rightarrow B between ∞-categories A and B, the induced maps:
  • : \operatorname{Tw}(A)\rightarrow(A^\mathrm{op}\times B)\times_{B^\mathrm{op}\times B}\operatorname{Tw}(B),
  • : \operatorname{Tw}(A)\rightarrow(B^\mathrm{op}\times A)\times_{B^\mathrm{op}\times B}\operatorname{Tw}(B),

: are cofinal.Cisinski 2019, Proposition 5.6.9.

Literature

  • {{cite book |last=Cisinski |first=Denis-Charles |author-link=Denis-Charles Cisinski |url=https://cisinski.app.uni-regensburg.de/CatLR.pdf |title=Higher Categories and Homotopical Algebra |date=2019-06-30 |publisher=Cambridge University Press |isbn=978-1108473200 |location= |language=en |authorlink=}}

References