unitary element

In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element.{{sfn|Dixmier|1977|p=5}}

Definition

Let \mathcal{A} be a *-algebra with unit {{nowrap|e.}} An element a \in \mathcal{A} is called unitary if {{nowrap|aa^* = a^*a = e.}} In other words, if a is invertible and a^{-1} = a^* holds, then a is unitary.{{sfn|Dixmier|1977|p=5}}

The set of unitary elements is denoted by \mathcal{A}_U or {{nowrap|U(\mathcal{A}).}}

A special case from particular importance is the case where \mathcal{A} is a complete normed *-algebra. This algebra satisfies the C*-identity (\left\| a^*a \right\| = \left\| a \right\|^2 \ \forall a \in \mathcal{A}) and is called a C*-algebra.

Criteria

  • Let \mathcal{A} be a unital C*-algebra and a \in \mathcal{A}_N a normal element. Then, a is unitary if the spectrum \sigma(a) consists only of elements of the circle group \mathbb{T}, i.e. {{nowrap|\sigma(a) \subseteq \mathbb{T} = \{ \lambda \in \Complex \mid | \lambda | = 1 \}.{{sfn|Kadison|Ringrose|1983|p=271}}}}

Examples

  • The unit e is unitary.{{sfn|Dixmier|1977|pages=4-5}}

Let \mathcal{A} be a unital C*-algebra, then:

  • Every projection, i.e. every element a \in \mathcal{A} with a = a^* = a^2, is unitary. For the spectrum of a projection consists of at most 0 and 1, as follows from the {{nowrap|continuous functional calculus.{{sfn|Blackadar|2006|pages=57,63}}}}
  • If a \in \mathcal{A}_{N} is a normal element of a C*-algebra \mathcal{A}, then for every continuous function f on the spectrum \sigma(a) the continuous functional calculus defines an unitary element f(a), if {{nowrap|f(\sigma(a)) \subseteq \mathbb{T}.{{sfn|Kadison|Ringrose|1983|p=271}}}}

Properties

Let \mathcal{A} be a unital *-algebra and {{nowrap|a,b \in \mathcal{A}_U.}} Then:

  • The element ab is unitary, since {{nowrap|((ab)^*)^{-1} = (b^*a^*)^{-1} = (a^*)^{-1} (b^*)^{-1} = ab.}} In particular, \mathcal{A}_U forms a {{nowrap|multiplicative group.{{sfn|Dixmier|1977|p=5}}}}
  • The element a is normal.{{sfn|Dixmier|1977|pages=4-5}}
  • The adjoint element a^* is also unitary, since a = (a^*)^* holds for the involution {{nowrap|*.{{sfn|Dixmier|1977|p=5}}}}
  • If \mathcal{A} is a C*-algebra, a has norm 1, i.e. {{nowrap|\left\| a \right \| = 1.{{sfn|Dixmier|1977|p=9}}}}

See also

Notes

{{reflist}}

References

  • {{cite book |last=Blackadar|first=Bruce |title=Operator Algebras. Theory of C*-Algebras and von Neumann Algebras |publisher=Springer |location=Berlin/Heidelberg |year=2006 |isbn=3-540-28486-9 |pages=57, 63 }}
  • {{cite book |last=Dixmier |first=Jacques |title=C*-algebras |publisher=North-Holland |location=Amsterdam/New York/Oxford |year=1977 |isbn=0-7204-0762-1 |translator-last=Jellett |translator-first=Francis }} English translation of {{cite book |display-authors=0 |last=Dixmier |first=Jacques |title=Les C*-algèbres et leurs représentations |language=fr |publisher=Gauthier-Villars |year=1969 }}
  • {{cite book |last1=Kadison |first1=Richard V. |last2=Ringrose |first2=John R. |title=Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. |publisher=Academic Press |location=New York/London |year=1983 |isbn=0-12-393301-3}}

{{SpectralTheory}}

Category:Abstract algebra

Category:C*-algebras