variable structure system

{{more citations needed|date=July 2011}}

A variable structure system, or VSS, is a discontinuous nonlinear system of the form

:\dot{\mathbf{x}} = \varphi( \mathbf{x}, t )

where \mathbf{x} \triangleq [x_1, x_2, \ldots, x_n]^{\operatorname{T}} \in \mathbb{R}^n is the state vector, t \in \mathbb{R} is the time variable, and \varphi(\mathbf{x},t) \triangleq [ \varphi_1(\mathbf{x},t), \varphi_2(\mathbf{x},t), \ldots, \varphi_n(\mathbf{x},t) ]^{\operatorname{T}} : \mathbb{R}^{n+1} \mapsto \mathbb{R}^n is a piecewise continuous function.{{Cite book|title=Advances in Variable Structure and Sliding Mode Control|editor1-last=Edwards|editor1-first=Cristopher|editor2-last=Fossas Colet|editor2-first=Enric|editor3-last=Fridman|editor3-first=Leonid|publisher=Springer-Verlag|location=Berlin|date=2006|series=Lecture Notes in Control and Information Sciences|volume=334|isbn=978-3-540-32800-1}} Due to the piecewise continuity of these systems, they behave like different continuous nonlinear systems in different regions of their state space. At the boundaries of these regions, their dynamics switch abruptly. Hence, their structure varies over different parts of their state space.

The development of variable structure control depends upon methods of analyzing variable structure systems, which are special cases of hybrid dynamical systems.

See also

References

{{reflist|colwidth=30em}}

2. Emelyanov, S.V., ed. (1967). Variable Structure Control Systems. Moscow: Nauka.

3. Emelyanov S, Utkin V, Tarin V, Kostyleva N, Shubladze A, Ezerov V, Dubrovsky E. 1970. Theory of Variable Structure Control Systems (in Russian). Moscow: Nauka.

4. Variable Structure Systems: From Principles to Implementation. A. Sabanovic, L. Fridman and S. Spurgeon (eds.), IEE, London, 2004, ISBN 0863413501.

5. Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications. Li, S., Yu, X., Fridman, L., Man, Z., Wang, X.(Eds.), Studies in Systems, Decision and Control, v. 115, Springer, 2017, ISBN 978-3-319-62895-0

6.Variable-Structure Systems and Sliding-Mode Control. M. Steinberger, M. Horn, L. Fridman.(eds.), Studies in Systems, Decision and Control, v.271, Springer International Publishing, Cham, 2020, ISBN 978-3-030-36620-9.

Further reading

{{refbegin}}

Y. Shtessel, C. Edwards, L. Fridman, A. Levant. Sliding Mode Control and Observation, Series: Control Engineering, Birkhauser: Basel, 2014, ISBN 978-0-81764-8923

  • {{cite book

| last = Khalil

| first = H.K.

| authorlink = Hassan K. Khalil

| year = 2002

| edition = 3rd

| url = http://www.egr.msu.edu/~khalil/NonlinearSystems/

| isbn = 0-13-067389-7

| title = Nonlinear Systems

| publisher = Prentice Hall

| location = Upper Saddle River, NJ}}

  • {{cite book

| author = Utkin, V.I.

| title = Sliding Modes in Control and Optimization

| publisher = Springer-Verlag

| date = 1992

| pages =

| isbn = 978-0-387-53516-6

}}

  • {{cite book

| editor-last = Zinober

| editor-first = A.S.I.

| title = Deterministic control of uncertain systems

| publisher = Peter Peregrinus Press

| place = London

| date = 1990

| isbn = 978-0-86341-170-0

| editor-link = Alan S.I. Zinober

}}

  • {{cite book

| editor-last = Zinober

| editor-first = Alan S.I.

| title = Variable Structure and Lyapunov Control

| series = Lecture Notes in Control and Information Sciences

| publisher = Springer-Verlag

| place = London

| date = 1994

| volume = 193

| isbn = 978-3-540-19869-7

| doi = 10.1007/BFb0033675

}}

{{refend}}

{{Systems}}

Category:Nonlinear systems

Category:Dynamical systems

Category:Concepts in physics

Category:Nonlinear control

{{tech-stub}}