variational perturbation theory
In mathematics, variational perturbation theory (VPT) is a mathematical method to convert divergent power series in a small expansion parameter, say
:,
into a convergent series in powers
:,
where is a critical exponent (the so-called index of "approach to scaling" introduced by Franz Wegner). This is possible with the help of variational parameters, which are determined by optimization order by order in . The partial sums are converted to convergent partial sums by a method developed in 1992.
{{cite journal
|last1=Kleinert |first1=H. |author-link=Hagen Kleinert
|year=1995
|title=Systematic Corrections to Variational Calculation of Effective Classical Potential
|url=http://users.physik.fu-berlin.de/~kleinert/213/213.pdf
|journal=Physics Letters A
|volume=173 |issue=4–5 |pages=332–342
|bibcode=1993PhLA..173..332K
|doi=10.1016/0375-9601(93)90246-V
}}
Most perturbation expansions in quantum mechanics are divergent for any small coupling strength . They can be made convergent by VPT (for details see the first textbook cited below). The convergence is exponentially fast.
{{cite journal
|last1=Kleinert |first1=H. |author-link=Hagen Kleinert
|last2=Janke |first2=W.
|year=1993
|title=Convergence Behavior of Variational Perturbation Expansion - A Method for Locating Bender-Wu Singularities
|url=http://users.physik.fu-berlin.de/~kleinert/235/235.pdf
|journal=Physics Letters A
|volume=206 |issue=5–6 |pages=283–289
|arxiv=quant-ph/9509005
|bibcode=1995PhLA..206..283K
|doi=10.1016/0375-9601(95)00521-4
{{cite journal
|last1=Guida |first1=R.
|last2=Konishi |first2=K.
|last3=Suzuki |first3=H.
|year=1996
|title=Systematic Corrections to Variational Calculation of Effective Classical Potential
|journal=Annals of Physics
|volume=249 |issue=1 |pages=109–145
|arxiv=hep-th/9505084
|bibcode=1996AnPhy.249..109G
|doi=10.1006/aphy.1996.0066
}}
After its success in quantum mechanics, VPT has been developed further to become an important mathematical tool in quantum field theory with its anomalous dimensions.
{{cite journal
|last1=Kleinert |first1=H. |author-link=Hagen Kleinert
|year=1998
|title=Strong-coupling behavior of φ^4 theories and critical exponents
|url=http://users.physik.fu-berlin.de/~kleinert/257/257.pdf
|journal=Physical Review D
|volume=57 |issue=4 |page=2264
|bibcode=1998PhRvD..57.2264K
|doi=10.1103/PhysRevD.57.2264
}} Applications focus on the theory of critical phenomena. It has led to the most accurate predictions of critical exponents.
More details can be read [http://users.physik.fu-berlin.de/~kleinert/b8/crit.htm here].
References
{{Reflist}}
External links
- Kleinert H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3. Auflage, [http://www.worldscibooks.com/physics/5057.html World Scientific (Singapore, 2004)] (readable online [http://www.physik.fu-berlin.de/~kleinert/b5 here]) (see Chapter 5)
- Kleinert H. and Verena Schulte-Frohlinde, Critical Properties of φ4-Theories, [http://www.worldscibooks.com/physics/4733.html World Scientific (Singapur, 2001)]; Paperback {{ISBN|981-02-4658-7}} (readable online [http://www.physik.fu-berlin.de/~kleinert/b8 here]) (see Chapter 19)
- {{cite journal
|last1=Feynman|first1=R. P.|author1-link=Richard P. Feynman
|last2=Kleinert |first2=H. |author2-link=Hagen Kleinert
|year=1986
|title=Effective classical partition functions
|journal=Physical Review A
|volume=34 |issue=6 |pages=5080–5084
|bibcode=1986PhRvA..34.5080F
|doi=10.1103/PhysRevA.34.5080
|pmid=9897894|url=https://authors.library.caltech.edu/3553/1/FEYpra86.pdf
}}