vector fields in cylindrical and spherical coordinates

{{Use American English|date = March 2019}}

{{Short description|Vector field representation in 3D curvilinear coordinate systems}}

File:3D Spherical.svg), and azimuthal angle φ (phi). The symbol ρ (rho) is often used instead of r.]]

Note: This page uses common physics notation for spherical coordinates, in which \theta is the angle between the z axis and the radius vector connecting the origin to the point in question, while \phi is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources.[http://mathworld.wolfram.com/CylindricalCoordinates.html Wolfram Mathworld, spherical coordinates]

Cylindrical coordinate system

= Vector fields =

Vectors are defined in cylindrical coordinates by (ρ, φ, z), where

  • ρ is the length of the vector projected onto the xy-plane,
  • φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),
  • z is the regular z-coordinate.

(ρ, φ, z) is given in Cartesian coordinates by:

\begin{bmatrix} \rho \\ \phi \\ z \end{bmatrix} =

\begin{bmatrix}

\sqrt{x^2 + y^2} \\ \operatorname{arctan}(y / x) \\ z

\end{bmatrix},\ \ \ 0 \le \phi < 2\pi,

thumb

or inversely by:

\begin{bmatrix} x \\ y \\ z \end{bmatrix} =

\begin{bmatrix} \rho\cos\phi \\ \rho\sin\phi \\ z \end{bmatrix}.

Any vector field can be written in terms of the unit vectors as:

\mathbf A

= A_x \mathbf{\hat x} + A_y \mathbf{\hat y} + A_z \mathbf{\hat z}

= A_\rho \mathbf{\hat \rho} + A_\phi \boldsymbol{\hat \phi} + A_z \mathbf{\hat z}

The cylindrical unit vectors are related to the Cartesian unit vectors by:

\begin{bmatrix}\boldsymbol{\hat \rho} \\ \boldsymbol{\hat\phi} \\ \mathbf{\hat z}\end{bmatrix}

= \begin{bmatrix}

\cos\phi & \sin\phi & 0 \\

-\sin\phi & \cos\phi & 0 \\

0 & 0 & 1

\end{bmatrix}

\begin{bmatrix} \mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix}

Note: the matrix is an orthogonal matrix, that is, its inverse is simply its transpose.

= Time derivative of a vector field =

To find out how the vector field A changes in time, the time derivatives should be calculated.

For this purpose Newton's notation will be used for the time derivative (\dot{\mathbf{A}}).

In Cartesian coordinates this is simply:

\dot{\mathbf{A}} = \dot{A}_x \hat{\mathbf{x}} + \dot{A}_y \hat{\mathbf{y}} + \dot{A}_z \hat{\mathbf{z}}

However, in cylindrical coordinates this becomes:

\dot{\mathbf{A}} = \dot{A}_\rho \hat{\boldsymbol{\rho}} + A_\rho \dot{\hat{\boldsymbol{\rho}}}

+ \dot{A}_\phi \hat{\boldsymbol{\phi}} + A_\phi \dot{\hat{\boldsymbol{\phi}}}

+ \dot{A}_z \hat{\boldsymbol{z}} + A_z \dot{\hat{\boldsymbol{z}}}

The time derivatives of the unit vectors are needed.

They are given by:

\begin{align}

\dot{\hat{\boldsymbol{\rho}}} & = \dot{\phi} \hat{\boldsymbol{\phi}} \\

\dot{\hat{\boldsymbol{\phi}}} & = - \dot\phi \hat{\boldsymbol{\rho}} \\

\dot{\hat{\mathbf{z}}} & = 0

\end{align}

So the time derivative simplifies to:

\dot{\mathbf{A}}

= \hat{\boldsymbol{\rho}} \left(\dot{A}_\rho - A_\phi \dot{\phi}\right)

+ \hat{\boldsymbol{\phi}} \left(\dot{A}_\phi + A_\rho \dot{\phi}\right)

+ \hat{\mathbf{z}} \dot{A}_z

= Second time derivative of a vector field =

The second time derivative is of interest in physics, as it is found in equations of motion for classical mechanical systems.

The second time derivative of a vector field in cylindrical coordinates is given by:

\ddot{\mathbf{A}}

= \mathbf{\hat \rho} \left(\ddot A_\rho - A_\phi \ddot\phi - 2 \dot A_\phi \dot\phi - A_\rho \dot\phi^2\right)

+ \boldsymbol{\hat\phi} \left(\ddot A_\phi + A_\rho \ddot\phi + 2 \dot A_\rho \dot\phi - A_\phi \dot\phi^2\right)

+ \mathbf{\hat z} \ddot A_z

To understand this expression, A is substituted for P, where P is the vector (ρ, φ, z).

This means that \mathbf{A} = \mathbf{P} = \rho \mathbf{\hat \rho} + z \mathbf{\hat z}.

After substituting, the result is given:

\ddot\mathbf{P}

= \mathbf{\hat \rho} \left(\ddot \rho - \rho \dot\phi^2\right)

+ \boldsymbol{\hat\phi} \left(\rho \ddot\phi + 2 \dot \rho \dot\phi\right)

+ \mathbf{\hat z} \ddot z

In mechanics, the terms of this expression are called:

class="wikitable"

| style="text-align:right;" | \ddot \rho \mathbf{\hat \rho}

central outward acceleration
style="text-align:right;" | -\rho \dot\phi^2 \mathbf{\hat \rho} centripetal acceleration
style="text-align:right;" | \rho \ddot\phi \boldsymbol{\hat\phi} angular acceleration
style="text-align:right;" | 2 \dot \rho \dot\phi \boldsymbol{\hat\phi} Coriolis effect
style="text-align:right;" | \ddot z \mathbf{\hat z} {{mvar|z}}-acceleration

{{See also|Centripetal force|Angular acceleration|Coriolis effect}}

Spherical coordinate system

= Vector fields =

Vectors are defined in spherical coordinates by (r, θ, φ), where

  • r is the length of the vector,
  • θ is the angle between the positive Z-axis and the vector in question (0 ≤ θπ), and
  • φ is the angle between the projection of the vector onto the xy-plane and the positive X-axis (0 ≤ φ < 2π).

(r, θ, φ) is given in Cartesian coordinates by:

\begin{bmatrix}r \\ \theta \\ \phi \end{bmatrix} =

\begin{bmatrix}

\sqrt{x^2 + y^2 + z^2} \\ \arccos(z / \sqrt{x^2 + y^2 + z^2}) \\ \arctan(y / x)

\end{bmatrix},\ \ \ 0 \le \theta \le \pi,\ \ \ 0 \le \phi < 2\pi,

or inversely by:

\begin{bmatrix} x \\ y \\ z \end{bmatrix} =

\begin{bmatrix} r\sin\theta\cos\phi \\ r\sin\theta\sin\phi \\ r\cos\theta\end{bmatrix}.

Any vector field can be written in terms of the unit vectors as:

\mathbf A

= A_x\mathbf{\hat x} + A_y\mathbf{\hat y} + A_z\mathbf{\hat z}

= A_r\boldsymbol{\hat r} + A_\theta\boldsymbol{\hat \theta} + A_\phi\boldsymbol{\hat \phi}

The spherical basis vectors are related to the Cartesian basis vectors by the Jacobian matrix:

\begin{bmatrix}\boldsymbol{\hat{r}} \\ \boldsymbol{\hat\theta} \\ \boldsymbol{\hat\phi} \end{bmatrix}

= \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\

\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} \\

\frac{\partial x}{\partial \phi} & \frac{\partial y}{\partial \phi} & \frac{\partial z}{\partial \phi} \end{bmatrix}

\begin{bmatrix} \mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix}

Normalizing the Jacobian matrix so that the spherical basis vectors have unit length we get:

\begin{bmatrix}\boldsymbol{\hat{r}} \\ \boldsymbol{\hat\theta} \\ \boldsymbol{\hat\phi} \end{bmatrix}

= \begin{bmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta \\

\cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta \\

-\sin\phi & \cos\phi & 0 \end{bmatrix}

\begin{bmatrix} \mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix}

Note: the matrix is an orthogonal matrix, that is, its inverse is simply its transpose.

The Cartesian unit vectors are thus related to the spherical unit vectors by:

\begin{bmatrix}\mathbf{\hat x} \\ \mathbf{\hat y} \\ \mathbf{\hat z} \end{bmatrix}

= \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\

\sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\

\cos\theta & -\sin\theta & 0 \end{bmatrix}

\begin{bmatrix} \boldsymbol{\hat{r}} \\ \boldsymbol{\hat\theta} \\ \boldsymbol{\hat\phi} \end{bmatrix}

= Time derivative of a vector field =

To find out how the vector field A changes in time, the time derivatives should be calculated.

In Cartesian coordinates this is simply:

\mathbf{\dot A} = \dot A_x \mathbf{\hat x} + \dot A_y \mathbf{\hat y} + \dot A_z \mathbf{\hat z}

However, in spherical coordinates this becomes:

\mathbf{\dot A} = \dot A_r \boldsymbol{\hat r} + A_r \boldsymbol{\dot{\hat r}}

+ \dot A_\theta \boldsymbol{\hat\theta} + A_\theta \boldsymbol{\dot{\hat\theta}}

+ \dot A_\phi \boldsymbol{\hat\phi} + A_\phi \boldsymbol{\dot{\hat\phi}}

The time derivatives of the unit vectors are needed. They are given by:

\begin{align}

\boldsymbol{\dot{\hat r}} &= \dot\theta \boldsymbol{\hat\theta} + \dot\phi\sin\theta \boldsymbol{\hat\phi} \\

\boldsymbol{\dot{\hat\theta}} &= - \dot\theta \boldsymbol{\hat r} + \dot\phi\cos\theta \boldsymbol{\hat\phi} \\

\boldsymbol{\dot{\hat\phi}} &= - \dot\phi\sin\theta \boldsymbol{\hat{r}} - \dot\phi\cos\theta \boldsymbol{\hat\theta}

\end{align}

Thus the time derivative becomes:

\mathbf{\dot A}

= \boldsymbol{\hat r} \left(\dot A_r - A_\theta \dot\theta - A_\phi \dot\phi \sin\theta \right)

+ \boldsymbol{\hat\theta} \left(\dot A_\theta + A_r \dot\theta - A_\phi \dot\phi \cos\theta\right)

+ \boldsymbol{\hat\phi} \left(\dot A_\phi + A_r \dot\phi \sin\theta + A_\theta \dot\phi \cos\theta\right)

See also

References

{{DEFAULTSORT:Vector Fields In Cylindrical And Spherical Coordinates}}

Category:Vector calculus

Category:Coordinate systems