virtual temperature#Virtual potential temperature

{{Short description|Virtual temperature of a moist air parcel}}

In atmospheric thermodynamics, the virtual temperature (T_v) of a moist air parcel is the temperature at which a theoretical dry air parcel would have a total pressure and density equal to the moist parcel of air.{{cite book

| last = Bailey

| first = Desmond T.

| others = John Irwin

| title = Meteorological Monitoring Guidance for Regulatory Modeling Applications

| orig-year = June 1987

| chapter-url = http://www.epa.gov/scram001/guidance/met/mmgrma.pdf

|date=February 2000

| publisher = United States Environmental Protection Agency

| location = Research Triangle Park, NC

| id = EPA-454/R-99-005

| pages = 9–14

| chapter = Upper-air Monitoring

}}

The virtual temperature of unsaturated moist air is always greater than the absolute air temperature, however, as the existence of suspended cloud droplets reduces the virtual temperature.

The virtual temperature effect is also known as the vapor buoyancy effect.{{Cite web|title=Cold air rises—what that means for Earth's climate|url=https://phys.org/news/2020-05-cold-air-riseswhat-earth-climate.html|access-date=2020-07-10|website=phys.org|language=en}} It has been described to increase Earth's thermal emission by warming the tropical atmosphere.{{Cite journal|last1=Yang|first1=Da|last2=Seidel|first2=Seth D.|date=2020-04-01|title=The Incredible Lightness of Water Vapor|journal=Journal of Climate|language=en|volume=33|issue=7|pages=2841–2851|doi=10.1175/JCLI-D-19-0260.1|bibcode=2020JCli...33.2841Y |issn=0894-8755|doi-access=free}}{{Cite journal|last1=Seidel|first1=Seth D.|last2=Yang|first2=Da|date=2020-05-01|title=The lightness of water vapor helps to stabilize tropical climate|journal=Science Advances|language=en|volume=6|issue=19|pages=eaba1951|doi=10.1126/sciadv.aba1951|pmid=32494724 |pmc=7202867 |bibcode=2020SciA....6.1951S |issn=2375-2548|doi-access=free}}

Introduction

=Description=

In atmospheric thermodynamic processes, it is often useful to assume air parcels behave approximately adiabatically, and approximately ideally. The specific gas constant for the standardized mass of one kilogram of a particular gas is variable, and described mathematically as

:R_x = \frac{R^*}{M_x},

where R^* is the molar gas constant, and M_x is the apparent molar mass of gas x in kilograms per mole. The apparent molar mass of a theoretical moist parcel in Earth's atmosphere can be defined in components of water vapor and dry air as

:M_\text{air} = \frac{e}{p} M_v + \frac{p_d}{p} M_d,

with e being partial pressure of water, p_d dry air pressure, and M_v and M_d representing the molar masses of water vapor and dry air respectively. The total pressure p is described by Dalton's law of partial pressures:

:p = p_d + e.

=Purpose=

Rather than carry out these calculations, it is convenient to scale another quantity within the ideal gas law to equate the pressure and density of a dry parcel to a moist parcel. The only variable quantity of the ideal gas law independent of density and pressure is temperature. This scaled quantity is known as virtual temperature, and it allows for the use of the dry-air equation of state for moist air.{{cite web

|url=http://glossary.ametsoc.org/wiki/Virtual_temperature

|title=AMS Glossary

|access-date=2014-06-30

|publisher=American Meteorological Society

}} Temperature has an inverse proportionality to density. Thus, analytically, a higher vapor pressure would yield a lower density, which should yield a higher virtual temperature in turn.

Derivation

Consider a moist air parcel containing masses m_d and m_v of dry air and water vapor in a given volume V. The density is given by

:\rho = \frac{m_d + m_v}{V} = \rho_d + \rho_v,

where \rho_d and \rho_v are the densities the dry air and water vapor would respectively have when occupying the volume of the air parcel. Rearranging the standard ideal gas equation with these variables gives

:e = \rho_v R_v T and p_d = \rho_d R_d T.

Solving for the densities in each equation and combining with the law of partial pressures yields

:\rho = \frac{p - e}{R_dT} + \frac{e}{R_v T}.

Then, solving for p and using \epsilon = \tfrac{R_d}{R_v} = \tfrac{M_v}{M_d} is approximately 0.622 in Earth's atmosphere:

:p = \rho R_d T_v,

where the virtual temperature T_v is

:T_v = \frac{T}{1 - \frac{e}{p}(1 - \epsilon)}.

We now have a non-linear scalar for temperature dependent purely on the unitless value e/p, allowing for varying amounts of water vapor in an air parcel. This virtual temperature T_v in units of kelvin can be used seamlessly in any thermodynamic equation necessitating it.

Variations

Often the more easily accessible atmospheric parameter is the mixing ratio w. Through expansion upon the definition of vapor pressure in the law of partial pressures as presented above and the definition of mixing ratio:

:\frac{e}{p} = \frac{w}{w + \epsilon},

which allows

:T_v = T\frac{w + \epsilon}{\epsilon(1 + w)}.

Algebraic expansion of that equation, ignoring higher orders of w due to its typical order in Earth's atmosphere of 10^{-3}, and substituting \epsilon with its constant value yields the linear approximation

:T_v \approx T(1 + 0.608w).

With the mixing ratio w expressed in g/g.{{cite journal |last1=Doswell |first1=Charles A. |last2=Rasmussen |first2=Erik N. |title=The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations |journal=Weather and Forecasting |date=1 December 1994 |volume=9 |issue=4 |pages=625–629 |doi=10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2 |bibcode=1994WtFor...9..625D |doi-access=free }}

An approximate conversion using T in degrees Celsius and mixing ratio w in g/kg is{{cite book

| last = U.S. Air Force

| title = The Use of the Skew-T Log p Diagram in Analysis and Forecasting

| year = 1990

| publisher = United States Air Force

| id = AWS-TR79/006

| pages = 4–9

}}

:T_v \approx T + \frac{w}{6}.

Knowing that specific humidity q is given in terms of mixing ratio w as q = \frac{w}{1+w}, then we can write mixing ratio in terms of the specific humidity as w = \frac{q}{1-q}.

We can now write the virtual temperature T_v in terms of specific humidity as

T_v = T\frac{\frac{q}{1-q}+\epsilon}{\epsilon(1+\frac{q}{1-q})}

Simplifying the above will reduce to

T_v = T[\frac{q}{\epsilon}+(1-q)]

and using the value of \epsilon = 0.622, then we can write

T_v = T(0.608q+1)

= Virtual potential temperature =

Virtual potential temperature is similar to potential temperature in that it removes the temperature variation caused by changes in pressure. Virtual potential temperature is useful as a surrogate for density in buoyancy calculations and in turbulence transport which includes vertical air movement.

= Density temperature =

A moist air parcel may also contain liquid droplets and ice crystals in addition to water vapor. A net mixing ratio w_T can be defined as the sum of the mixing ratios of water vapor w, liquid w_i, and ice w_l present in the parcel. Assuming that w_i and w_l are typically much smaller than w, a density temperature of a parcel T_\rho can be defined, representing the temperature at which a theoretical dry air parcel would have the a pressure and density equal to a moist parcel of air while accounting for condensates:{{cite book |last1=Emanuel |first1=Kerry A. |author1-link=Kerry Emanuel |title=Atmospheric Convection |date=1994 |publisher=Oxford University Press |isbn=0-19-506630-8 |url=https://books.google.com/books?id=VdaBBHEGAcMC |via=Google Books |access-date=18 October 2023 |chapter=Moist Thermodynamic Processes}}{{rp|113}}

:T_\rho = T \frac{1 + w/\epsilon}{1 + w_T}

Uses

Virtual temperature is used in adjusting CAPE soundings for assessing available convective potential energy from skew-T log-P diagrams. The errors associated with ignoring virtual temperature correction for smaller CAPE values can be quite significant.{{cite journal|last1=Doswell|first1=Charles A.|last2=Rasmussen|first2=Erik N.|title=The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations|journal=Weather and Forecasting|date=1994|volume=9|issue=4|pages=625–629|doi=10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2|bibcode=1994WtFor...9..625D|doi-access=free}} Thus, in the early stages of convective storm formation, a virtual temperature correction is significant in identifying the potential intensity in tropical cyclogenesis.{{cite journal|last1=Camargo|first1=Suzana J.|last2=Sobel|first2=Adam H.|last3=Barnston|first3=Anthony G.|last4=Emanuel|first4=Kerry A.|title=Tropical cyclone genesis potential index in climate models|journal=Tellus A|date=2007|volume=59|issue=4|pages=428–443|doi=10.1111/j.1600-0870.2007.00238.x|bibcode=2007TellA..59..428C|url=https://academiccommons.columbia.edu/doi/10.7916/D82J6PHF/download|doi-access=free}}

Further reading

  • {{cite book

| last1 = Wallace

| first1 = John M.

| first2 = Peter V.

| last2 = Hobbs

| title = Atmospheric Science

| year = 2006

| isbn = 0-12-732951-X}}

References