y-homeomorphism

{{inline |date=May 2024}}

In mathematics, the y-homeomorphism, or crosscap slide, is a special type of auto-homeomorphism in non-orientable surfaces.

It can be constructed by sliding a Möbius strip included on the surface

around an essential 1-sided closed curve until the original position; thus it is necessary that the surfaces have genus greater than one. The projective plane {\mathbb RP}^2 has no y-homeomorphism.

See also

References

  • {{cite journal

| last1=Birman | first1=J. S. | authorlink1=Joan Birman

| last2=Chillingworth | first2=D. R. J.

| title=On the homeotopy group of a non-orientable surface

| journal=Mathematical Proceedings of the Cambridge Philosophical Society

| volume=71

| issue=3

| date=1972

| pages=437–448

| doi=10.1017/S0305004100050714| bibcode=1972PCPS...71..437B }}

  • {{cite journal

| last1=Chillingworth | first1=D. R. J.

| title=A finite set of generators for the homeotopy group of a non-orientable surface

| journal=Mathematical Proceedings of the Cambridge Philosophical Society

| volume=65

| issue=2

| date=1969

| pages=409–430

| doi=10.1017/S0305004100044388| bibcode=1969PCPS...65..409C

}}

  • {{cite journal

| last1=Korkmaz | first1=Mustafa

| title=Mapping class group of non-orientable surface

| journal=Geometriae Dedicata

| volume=89

| date=2002

| pages=109–133

| doi=10.1023/A:1014289127999}}

  • {{cite journal

| last1=Lickorish | first1=W. B. R. | authorlink1=W. B. R. Lickorish

| title=Homeomorphisms of non-orientable two-manifolds

| journal=Mathematical Proceedings of the Cambridge Philosophical Society

| volume=59

| issue=2

| date=1963

| pages=307–317

| doi=10.1017/S0305004100036926| bibcode=1963PCPS...59..307L }}

Category:Geometric topology

Category:Homeomorphisms

{{Geometry-stub}}