zero to the power of zero

{{Short description|Mathematical expression with disputed status}}

{{use dmy dates|date=July 2021|cs1-dates=y}}Zero to the power of zero, denoted as {{math|00}}, is a mathematical expression with different interpretations depending on the context. In certain areas of mathematics, such as combinatorics and algebra, {{math|1=00}} is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents. For instance, in combinatorics, defining {{math|1=00 = 1}} aligns with the interpretation of choosing 0 elements from a set and simplifies polynomial and binomial expansions.

However, in other contexts, particularly in mathematical analysis, {{math|1=00}} is often considered an indeterminate form. This is because the value of {{math|x{{i sup|y}}}} as both {{math|x}} and {{math|y}} approach zero can lead to different results based on the limiting process. The expression arises in limit problems and may result in a range of values or diverge to infinity, making it difficult to assign a single consistent value in these cases.

The treatment of {{math|1=00}} also varies across different computer programming languages and software. While many follow the convention of assigning {{math|1=00 = 1}} for practical reasons, others leave it undefined or return errors depending on the context of use, reflecting the ambiguity of the expression in mathematical analysis.

Discrete exponents

Many widely used formulas involving natural-number exponents require {{math|00}} to be defined as {{math|1}}. For example, the following three interpretations of {{math|b{{sup|0}}}} make just as much sense for {{math|1=b = 0}} as they do for positive integers {{mvar|b}}:

All three of these specialize to give {{math|1=0{{sup|0}} = 1}}.

Polynomials and power series

When evaluating polynomials, it is convenient to define {{math|00}} as {{math|1}}. A (real) polynomial is an expression of the form {{math|a0x0 + ⋅⋅⋅ + anxn}}, where {{math|x}} is an indeterminate, and the coefficients {{math|ai}} are real numbers. Polynomials are added termwise, and multiplied by applying the distributive law and the usual rules for exponents. With these operations, polynomials form a ring {{math|R[x]}}. The multiplicative identity of {{math|R[x]}} is the polynomial {{math|x0}}; that is, {{math|x0}} times any polynomial {{math|p(x)}} is just {{math|p(x)}}. Also, polynomials can be evaluated by specializing {{math|x}} to a real number. More precisely, for any given real number {{math|r}}, there is a unique unital algebra homomorphism {{math|evr : R[x] → R}} such that {{math|1=evr(x) = r}}. Because {{math|evr}} is unital, {{math|1=evr(x0) = 1}}. That is, {{math|1=r0 = 1}} for each real number {{math|r}}, including 0. The same argument applies with {{math|R}} replaced by any ring.

Defining {{math|1=00 = 1}} is necessary for many polynomial identities. For example, the binomial theorem (1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k}x^{k} holds for {{math|1=x = 0}} only if {{math|1=00 = 1}}.

Similarly, rings of power series require {{math|1=x0}} to be defined as 1 for all specializations of {{math|x}}. For example, identities like \frac{1}{1-x}=\sum_{n=0}^{\infty}x^n and e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!} hold for {{math|1=x = 0}} only if {{math|1=00 = 1}}.

In order for the polynomial {{math|x0}} to define a continuous function {{math|RR}}, one must define {{math|1=00 = 1}}.

In calculus, the power rule \frac{d}{dx}x^n=nx^{n-1} is valid for {{math|1=n = 1}} at {{math|1=x = 0}} only if {{math|1=00 = 1}}.

Continuous exponents

Image:X^y.png

Limits involving algebraic operations can often be evaluated by replacing subexpressions with their limits; if the resulting expression does not determine the original limit, the expression is known as an indeterminate form. The expression {{math|0{{sup|0}}}} is an indeterminate form: Given real-valued functions {{math|f(t)}} and {{math|g(t)}} approaching {{math|0}} (as {{math|t}} approaches a real number or {{math|±∞}}) with {{math|f(t) > 0}}, the limit of {{math|f(t)g(t)}} can be any non-negative real number or {{math|+∞}}, or it can diverge, depending on {{mvar|f}} and {{mvar|g}}. For example, each limit below involves a function {{math|f(t)g(t)}} with {{math|f(t), g(t) → 0}} as {{math|t → 0+}} (a one-sided limit), but their values are different:

\lim_{t \to 0^+} {t}^{t} = 1 ,

\lim_{t \to 0^+} \left(e^{-1/t^2}\right)^t = 0,

\lim_{t \to 0^+} \left(e^{-1/t^2}\right)^{-t} = +\infty,

\lim_{t \to 0^+} \left(a^{-1/t}\right)^{-t} = a.

Thus, the two-variable function {{math|x{{i sup|y}}}}, though continuous on the set {{math|{(x, y) : x > 0}{{null}}}}, cannot be extended to a continuous function on {{math|{(x, y) : x > 0} ∪ {(0, 0)}{{null}}}}, no matter how one chooses to define {{math|00}}.

On the other hand, if {{math|f}} and {{math|g}} are analytic functions on an open neighborhood of a number {{mvar|c}}, then {{math|f(t)g(t) → 1}} as {{mvar|t}} approaches {{mvar|c}} from any side on which {{mvar|f}} is positive.

This and more general results can be obtained by studying the limiting behavior of the function \log(f(t)^{g(t)})=g(t)\log f(t).{{cite journal

| last1 = Baxley

| first1 = John V.

| last2 = Hayashi

| first2 = Elmer K.

| date = June 1978

| title = Indeterminate Forms of Exponential Type

| url = https://www.jstor.org/stable/2320074

| journal = The American Mathematical Monthly

| volume = 85

| issue = 6

| pages = 484–486

| doi = 10.2307/2320074

| jstor = 2320074

| access-date = 23 November 2021

}}{{cite journal

| last1 = Xiao

| first1 = Jinsen

| last2 = He

| first2 = Jianxun

| date = December 2017

| title = On Indeterminate Forms of Exponential Type

| url = https://www.jstor.org/stable/10.4169/math.mag.90.5.371

| journal = Mathematics Magazine

| volume = 90

| issue = 5

| pages = 371–374

| doi = 10.4169/math.mag.90.5.371

| jstor = 10.4169/math.mag.90.5.371

| s2cid = 125602000

| access-date = 23 November 2021

}}

Complex exponents

In the complex domain, the function {{math|z{{i sup|w}}}} may be defined for nonzero {{math|z}} by choosing a branch of {{math|log z}} and defining {{math|z{{i sup|w}}}} as {{math|e{{i sup|w log z}}}}. This does not define {{math|0w}} since there is no branch of {{math|log z}} defined at {{math|1=z = 0}}, let alone in a neighborhood of {{math|0}}.

History

=As a value=

In 1752, Euler in Introductio in analysin infinitorum wrote that {{math|1=a{{sup|0}} = 1}} and explicitly mentioned that {{math|1=0{{sup|0}} = 1}}. An annotation attributed to Mascheroni in a 1787 edition of Euler's book Institutiones calculi differentialis offered the "justification"

0^0 = (a-a)^{n-n} = \frac{(a-a)^n}{(a-a)^n} = 1

as well as another more involved justification. In the 1830s, Libri published several further arguments attempting to justify the claim {{math|1=00 = 1}}, though these were far from convincing, even by standards of rigor at the time.

=As a limiting form=

Euler, when setting {{math|1=0{{sup|0}} = 1}}, mentioned that consequently the values of the function {{math|0{{sup|x}}}} take a "huge jump", from {{math|∞}} for {{math|x < 0}}, to {{math|1}} at {{math|1=x = 0}}, to {{math|0}} for {{math|x > 0}}.

In 1814, Pfaff used a squeeze theorem argument to prove that {{math|x{{sup|x}} → 1}} as {{math|x → 0{{sup|+}}}}.

On the other hand, in 1821 Cauchy explained why the limit of {{math|x{{sup|y}}}} as positive numbers {{mvar|x}} and {{mvar|y}} approach {{math|0}} while being constrained by some fixed relation could be made to assume any value between {{math|0}} and {{math|∞}} by choosing the relation appropriately. He deduced that the limit of the full two-variable function {{math|x{{sup|y}}}} without a specified constraint is "indeterminate". With this justification, he listed {{math|00}} along with expressions like {{math|{{sfrac|0|0}}}} in a table of indeterminate forms.

Apparently unaware of Cauchy's work, Möbius in 1834, building on Pfaff's argument, claimed incorrectly that {{math|f(x)g(x) → 1}} whenever {{math|f(x),g(x) → 0}} as {{mvar|x}} approaches a number {{mvar|c}} (presumably {{mvar|f}} is assumed positive away from {{mvar|c}}). Möbius reduced to the case {{math|1=c = 0}}, but then made the mistake of assuming that each of {{mvar|f}} and {{mvar|g}} could be expressed in the form {{math|Px{{sup|n}}}} for some continuous function {{mvar|P}} not vanishing at {{math|0}} and some nonnegative integer {{mvar|n}}, which is true for analytic functions, but not in general. An anonymous commentator pointed out the unjustified step; then another commentator who signed his name simply as "S" provided the explicit counterexamples {{math|(e−1/x)xe{{sup|−1}}}} and {{math|(e−1/x)2xe{{sup|−2}}}} as {{math|x → 0{{sup|+}}}} and expressed the situation by writing that "{{math|0{{sup|0}}}} can have many different values".

=Current situation=

  • Some authors define {{math|00}} as {{math|1}} because it simplifies many theorem statements. According to Benson (1999), "The choice whether to define {{math|00}} is based on convenience, not on correctness. If we refrain from defining {{math|00}}, then certain assertions become unnecessarily awkward. ... The consensus is to use the definition {{math|1=00 = 1}}, although there are textbooks that refrain from defining {{nowrap begin}}{{math|00}}."{{nowrap end}} Knuth (1992) contends more strongly that {{math|00}} "has to be {{math|1}}"; he draws a distinction between the value {{math|00}}, which should equal {{math|1}}, and the limiting form {{math|00}} (an abbreviation for a limit of {{math|f(t)g(t)}} where {{math|f(t), g(t) → 0}}), which is an indeterminate form: "Both Cauchy and Libri were right, but Libri and his defenders did not understand why truth was on their side."
  • Other authors leave {{math|00}} undefined because {{math|00}} is an indeterminate form: {{math|f(t), g(t) → 0}} does not imply {{math|f(t)g(t) → 1}}.

There do not seem to be any authors assigning {{math|00}} a specific value other than 1.

Treatment on computers

=IEEE floating-point standard=

The IEEE 754-2008 floating-point standard is used in the design of most floating-point libraries. It recommends a number of operations for computing a power:

  • pown (whose exponent is an integer) treats {{math|00}} as {{math|1}}; see {{section link||Discrete exponents}}.
  • pow (whose intent is to return a non-NaN result when the exponent is an integer, like pown) treats {{math|00}} as {{math|1}}.
  • powr treats {{math|00}} as NaN (Not-a-Number) due to the indeterminate form; see {{section link||Continuous exponents}}.

The pow variant is inspired by the pow function from C99, mainly for compatibility. It is useful mostly for languages with a single power function. The pown and powr variants have been introduced due to conflicting usage of the power functions and the different points of view (as stated above).

=Programming languages=

The C and C++ standards do not specify the result of {{math|00}} (a domain error may occur). But for C, as of C99, if the normative annex F is supported, the result for real floating-point types is required to be {{math|1}} because there are significant applications for which this value is more useful than NaN (for instance, with discrete exponents); the result on complex types is not specified, even if the informative annex G is supported. The Java standard, the .NET Framework method System.Math.Pow, Julia, and Python also treat {{math|00}} as {{math|1}}. Some languages document that their exponentiation operation corresponds to the pow function from the C mathematical library; this is the case with Lua's ^ operator and Perl's ** operator (where it is explicitly mentioned that the result of 0**0 is platform-dependent).

=Mathematical and scientific software=

R, SageMath, and PARI/GP evaluate {{math|{{var|x}}{{sup|0}}}} to {{math|1}}. Mathematica simplifies {{math|{{var|x}}{{sup|0}}}} to {{math|1}} even if no constraints are placed on {{math|{{var|x}}}}; however, if {{math|0{{sup|0}}}} is entered directly, it is treated as an error or indeterminate. Mathematica and PARI/GP further distinguish between integer and floating-point values: If the exponent is a zero of integer type, they return a {{math|1}} of the type of the base; exponentiation with a floating-point exponent of value zero is treated as undefined, indeterminate or error.

See also

References

{{reflist|refs=

{{cite book |author-first=Nicolas |author-last=Bourbaki |author-link=Nicolas Bourbaki |title=Elements of Mathematics, Theory of Sets |publisher=Springer-Verlag |date=2004 |chapter=III.§3.5}}

{{cite book |author-first=Nicolas |author-last=Bourbaki |title=Algèbre |publisher=Springer |date=1970 |author-link=Nicolas Bourbaki |chapter=§III.2 No. 9 |quote=L'unique monôme de degré {{math|0}} est l'élément unité de {{math|A[(Xi)iI]}}; on l'identifie souvent à l'élément unité {{math|1}} de {{math|A}}}}

{{cite book |author-first=Nicolas |author-last=Bourbaki |title=Algèbre |publisher=Springer |date=1970 |author-link=Nicolas Bourbaki |chapter=§IV.1 No. 3}}

{{cite journal |author-first=A. F. |author-last=Möbius |title=Beweis der Gleichung {{math|1=00 = 1}}, nach J. F. Pfaff |trans-title=Proof of the equation {{math|1=00 = 1}}, according to J. F. Pfaff |language=de |url=http://babel.hathitrust.org/cgi/pt?id=mdp.39015036988163;view=1up;seq=142 |journal=Journal für die reine und angewandte Mathematik |issue=12 |date=1834 |pages=134–136 |doi=10.1515/crll.1834.12.134 |volume=1834 |s2cid=199547186}}

{{cite book |date=1988 |title=Introduction to analysis of the infinite, Book 1 |author-first=Leonhard |author-last=Euler |author-link=Leonhard Euler |translator-first=J. D. |translator-last=Blanton |publisher=Springer |isbn=978-0-387-96824-7 |url=https://books.google.com/books?id=H58dmcLEnk4C |chapter=Chapter 6, §97 |page=75}}

{{cite journal |author-last=Libri |author-first=Guillaume |author-link=Guglielmo Libri Carucci dalla Sommaja |title=Mémoire sur les fonctions discontinues. |language=fr |journal=Journal für die reine und angewandte Mathematik |date=1833 |volume=1833 |issue=10 |pages=303–316 |doi=10.1515/crll.1833.10.303 |s2cid=121610886 |url=http://www.numdam.org/item/ASENS_1875_2_4__57_0/}}

{{cite journal |author-last=Knuth |author-first=Donald E. |author-link=Donald E. Knuth |title=Two Notes on Notation |journal=The American Mathematical Monthly |date=1992 |volume=99 |issue=5 |pages=403–422 |doi=10.1080/00029890.1992.11995869 |arxiv=math/9205211 |bibcode=1992math......5211K}}

{{cite journal |author=Anonymous |title=Bemerkungen zu dem Aufsatze überschrieben "Beweis der Gleichung {{math|1=00 = 1}}, nach J. F. Pfaff" |trans-title=Remarks on the essay "Proof of the equation {{math|1=00 = 1}}, according to J. F. Pfaff" |language=de |url=http://babel.hathitrust.org/cgi/pt?id=mdp.39015036988163;view=1up;seq=300 |journal=Journal für die reine und angewandte Mathematik |issue=12 |date=1834 |pages=292–294 |doi=10.1515/crll.1834.12.292 |volume=1834}}

{{cite book |author-first=Donald C. |author-last=Benson |title=The Moment of Proof: Mathematical Epiphanies |location=New York, USA |publisher=Oxford University Press |publication-place=Oxford, UK |date=1999 |page=29 |isbn=978-0-19-511721-9}}

{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-link7=Nathalie Revol |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |date=2010 |publisher=Birkhäuser |edition=1 |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668|page=216 |isbn=978-0-8176-4704-9 |s2cid=5693480 |url=https://cds.cern.ch/record/1315760}} {{isbn|978-0-8176-4705-6}} (online), {{isbn|0-8176-4704-X}} (print)

{{cite web |url=https://reference.wolfram.com/language/ref/Power.html |title=Wolfram Language & System Documentation: Power |publisher=Wolfram | access-date=2018-08-02}}

{{cite web |url=http://pari.math.u-bordeaux.fr/cgi-bin/gitweb.cgi?p=pari.git;a=commitdiff;h=c2fac9a15 |title=pari.git / commitdiff – 10- x ^ t_FRAC: return an exact result if possible; e.g. 4^(1/2) is now 2 |access-date=2018-09-10}}

{{cite book |title=Concrete Mathematics |edition=1st |publisher=Addison-Wesley Longman Publishing Co. |date=1989-01-05 |isbn=0-201-14236-8 |author-first=Ronald |author-last=Graham |author-link=Ronald Graham |author-first2=Donald |author-last2=Knuth |author-link2=Donald Knuth |author-first3=Oren |author-last3=Patashnik |author-link3=Oren Patashnik |page=162 |chapter=Binomial coefficients |title-link=Concrete Mathematics |quote=Some textbooks leave the quantity {{math|00}} undefined, because the functions {{math|x0}} and {{math|0x}} have different limiting values when {{math|x}} decreases to 0. But this is a mistake. We must define {{math|1=x0 = 1}}, for all {{math|x}}, if the binomial theorem is to be valid when {{math|1=x = 0}}, {{math|1=y = 0}}, and/or {{math|1=x = −y}}. The binomial theorem is too important to be arbitrarily restricted! By contrast, the function {{math|0x}} is quite unimportant.}}

{{cite journal |author-last1=Vaughn |author-first1=Herbert E. |date=1970 |title=The expression {{math|0{{sup|0}}}} |journal=The Mathematics Teacher |volume=63 |issue= |pages=111–112}}

{{cite book |author-first1=S. C. |author-last1=Malik |author-first2=Savita |author-last2=Arora |date=1992 |title=Mathematical Analysis |publisher=Wiley |location=New York, USA |page=223 |isbn=978-81-224-0323-7 |quote=In general the limit of {{math|φ(x)/ψ(x)}} when {{math|1=x = a}} in case the limits of both the functions exist is equal to the limit of the numerator divided by the denominator. But what happens when both limits are zero? The division ({{math|0/0}}) then becomes meaningless. A case like this is known as an indeterminate form. Other such forms are {{math|∞/∞}}, {{math|0 × ∞}}, {{math|∞ − ∞}}, {{math|00}}, {{math|1}} and {{math|∞0}}.}}

{{cite journal |author-first=L. J. |author-last=Paige |title=A note on indeterminate forms |jstor=2307224 |journal=American Mathematical Monthly |volume=61 |issue=3 |date=March 1954 |pages=189–190 |doi=10.2307/2307224}}

{{cite book |author-first1=George F. |author-last1=Carrier |author-first2=Max |author-last2=Krook |author-first3=Carl E. |author-last3=Pearson |title=Functions of a Complex Variable: Theory and Technique |date=2005 |page=15 |isbn=0-89871-595-4 |quote=Since {{math|log(0)}} does not exist, {{math|0z}} is undefined. For {{math|Re(z) > 0}}, we define it arbitrarily as {{math|0}}.}}

{{cite book |author-first=Mario |author-last=Gonzalez |title=Classical Complex Analysis |publisher=Chapman & Hall |date=1991 |page=56 |isbn=0-8247-8415-4 |quote=For {{math|1=z = 0}}, {{math|w ≠ 0}}, we define {{math|1=0w = 0}}, while {{math|00}} is not defined.}}

{{cite magazine |author-first=Mark D. |author-last=Meyerson |title=The {{math|xx}} Spindle |magazine=Mathematics Magazine |volume=69 |number=3 |date=June 1996 |pages=198–206 |doi=10.1080/0025570X.1996.11996428 |quote=... Let's start at {{math|1=x = 0}}. Here {{math|xx}} is undefined.}}

{{cite book |date=1988 |title=Introduction to analysis of the infinite, Book 1 |author-first=Leonhard |author-last=Euler |author-link=Leonhard Euler |translator-first=J. D. |translator-last=Blanton |publisher=Springer |isbn=978-0-387-96824-7 |url=https://books.google.com/books?id=H58dmcLEnk4C |chapter=Chapter 6, §99 |page=76}}

{{cite book |date=1787 |title=Institutiones calculi differentialis, Vol. 2 |author-first=Leonhard |author-last=Euler |author-link=Leonhard Euler |publisher=Ticini |isbn=978-0-387-96824-7 |url=https://books.google.com/books?id=H58dmcLEnk4C}}

{{cite journal |author-last=Libri |author-first=Guillaume |author-link=Guglielmo Libri Carucci dalla Sommaja |title=Note sur les valeurs de la fonction {{math|00x}} |language=fr |journal=Journal für die reine und angewandte Mathematik |date=1830 |volume=1830 |issue=6 |pages=67–72 |doi=10.1515/crll.1830.6.67|s2cid=121706970}}

{{citation |author-first=Augustin-Louis |author-last=Cauchy |author-link=Augustin-Louis Cauchy |title=Cours d'Analyse de l'École Royale Polytechnique |language=fr |date=1821 |pages=65–69 |series=Oeuvres Complètes: 2 |volume=3}}

{{cite book |author-last1=Edwards |author-last2=Penney |date=1994 |title=Calculus |edition=4th |publisher=Prentice-Hall |page=466}}

{{cite book |author-last1=Keedy |author-last2=Bittinger |author-last3=Smith |date=1982 |title=Algebra Two |publisher=Addison-Wesley |page=32}}

{{cite web |url=http://grouper.ieee.org/groups/754/email/msg03270.html |title=More transcendental questions |website=IEEE |archive-url=https://web.archive.org/web/20171114040441/http://grouper.ieee.org/groups/754/email/msg03270.html |archive-date=2017-11-14 |access-date=2019-05-27}} (NB. Beginning of the discussion about the power functions for the revision of the IEEE 754 standard, May 2007.)

{{cite web |url=http://grouper.ieee.org/groups/754/email/msg03292.html |title=Re: A vague specification |website=IEEE |archive-url=https://web.archive.org/web/20171114040300/http://grouper.ieee.org/groups/754/email/msg03292.html |archive-date=2017-11-14 |access-date=2019-05-27}} (NB. Suggestion of variants in the discussion about the power functions for the revision of the IEEE 754 standard, May 2007.)

{{cite report |title=Rationale for International Standard—Programming Languages—C |version=Revision 5.10 |date=April 2003 |url=https://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf |page=182}}

{{cite web |url=https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#pow-double-double- |title=Math (Java Platform SE 8) pow |publisher=Oracle}}

{{cite web |url=https://docs.microsoft.com/en-us/dotnet/api/system.math.pow |title=.NET Framework Class Library Math.Pow Method |publisher=Microsoft}}

{{cite web |url=https://docs.python.org/3/library/stdtypes.html |title=Built-in Types — Python 3.8.1 documentation |access-date=2020-01-25 |quote=Python defines {{mono|1=pow(0, 0)}} and {{mono|1=0 ** 0}} to be {{math|1}}, as is common for programming languages.}}

{{cite web |url=https://docs.python.org/3/library/math.html |title=math — Mathematical functions — Python 3.8.1 documentation |access-date=2020-01-25 |quote=Exceptional cases follow Annex 'F' of the C99 standard as far as possible. In particular, {{mono|1=pow(1.0, x)}} and {{mono|1=pow(x, 0.0)}} always return 1.0, even when {{mono|1=x}} is a zero or a {{mono|1=NaN}}.}}

{{cite web |url=https://www.lua.org/manual/5.3/manual.html#3.4.1 |title=Lua 5.3 Reference Manual |access-date=2019-05-27}}

{{cite web |url=https://perldoc.perl.org/perlop.html#Exponentiation |title=perlop – Exponentiation |access-date=2019-05-27}}

{{cite web |url=https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf |title=R: A Language and Environment for Statistical Computing – Reference Index |author=The R Core Team |date=2023-06-11 |version=Version 4.3.0 |page=25 |quote=1 ^ y and y ^ 0 are 1, always. |access-date=2019-11-22}}

{{cite web |url=https://doc.sagemath.org/html/en/reference/rings_standard/sage/rings/integer.html |title=Sage 9.2 Reference Manual: Standard Commutative Rings. Elements of the ring Z of integers. |last=The Sage Development Team |date=2020 |access-date=2021-01-21 |quote=For consistency with Python and MPFR, 0^0 is defined to be 1 in Sage.}}

{{cite web |url=https://pari.math.u-bordeaux.fr/pub/pari/manuals/2.11.0/users.pdf |title=Users' Guide to PARI/GP (version 2.11.0) |author=The PARI Group |pages=10,122 |date=2018 |quote=There is also the exponentiation operator ^, when the exponent is of type integer; otherwise, it is considered as a transcendental function. ... If the exponent {{math|{{var|n}}}} is an integer, then exact operations are performed using binary (left-shift) powering techniques. ... If the exponent {{math|{{var|n}}}} is not an integer, powering is treated as the transcendental function {{math|exp({{var|n}} log {{var|x}})}}. |access-date=2018-09-04}}

}}