:Abhik Ghosh
{{Short description|Indian chemist}}
{{Multiple issues|
{{Autobiography|date=April 2025}}
{{BLP sources|date=April 2025}}
}}
{{Use dmy dates|date=March 2017}}
{{Infobox person
| name = Abhik Ghosh (Bengali: অভীক ঘোষ)
| image = abhik-cv.jpg
| caption =
| birth_name = Abhik Ghosh
| birth_date = {{Birth date|1964|06|12|df=y}}
| birth_place = Kolkata, West Bengal, India
| death_date =
| death_place =
| nationality = Indian
| alma_mater = University of Minnesota
Jadavpur University
South Point School
St. Lawrence High School, Kolkata
| occupation = {{hlist|Professor of chemistry at University of Tromsø|inorganic and materials chemist|science communicator}}
| known_for = {{hlist|Contributions to: inorganic and bioinorganic chemistry|porphyrin and corrole chemistry|relativistic effects|quadruple bonds|science communication|history of chemistry|LGBT history|}}
| children = Avroneel Ghosh (son)
| parents = Subir Kumar Ghosh (father)
Sheila Ghosh (mother)
| awards = {{hlist|PROSE Award for Best Textbook in Mathematics and Physical Sciences (2015)|
Hans Fischer Career Award for lifetime contributions to porphyrin science (2022)|
Olav Thon Prize for Outstanding Teaching (2025)|}}
| honours = {{hlist|Member of the European Academy of Sciences (2022-)|
Member of the Academia Europaea (2023-)|
Member of the Norwegian Academy of Science and Letters (2025-)|}}
}}
Abhik Ghosh (Bengali: অভীক ঘোষ) is an Indian inorganic chemist and materials scientist and a professor of chemistry at UiT – The Arctic University of Norway in Tromsø, Norway.{{Cite web|title=Abhik Ghosh (0000-0003-1161-6364)|url=https://orcid.org/0000-0003-1161-6364|website=orcid.org|language=en|access-date=2020-05-03}}
Early life and education
Abhik Ghosh was born in Kolkata, West Bengal, India, in 1964. He attended St. Lawrence High School (1971–1981) and South Point High School (1981–1983). As a child, he learned Sanskrit from his grandmother Ila Ghosh (née Roy), a language he still speaks and reads fluently.
Abhik obtained a B.Sc. (Honours) in chemistry from Jadavpur University, Kolkata, India, in 1987, winning the University Medal of the Faculty of Science. The same year, he moved to the University of Minnesota, where he completed a PhD under the supervision of Regents' Professor Paul G. Gassman (while also collaborating with Jan Almlöf) in 1992 and subsequently also postdoctoral research with Lawrence Que Jr. During this period, Abhik reported some of the first high-quality ab initio and density functional theory calculations on bioinorganic systems, helping lay the foundation of the now thriving field of computational bioinorganic chemistry. He did a brief, second postdoc with David Bocian at the University of California Riverside, in the course of which he derived significant new insight into the problem diatomic ligand discrimination by heme proteins.{{Cite journal|last1=Ghosh|first1=Abhik|last2=Bocian|first2=David F.|date=January 1996|title=Carbonyl Tilting and Bending Potential Energy Surface of Carbon Monoxyhemes|url=https://pubs.acs.org/doi/10.1021/jp953543h|journal=The Journal of Physical Chemistry|language=en|volume=100|issue=16|pages=6363–6367|doi=10.1021/jp953543h|issn=0022-3654|url-access=subscription}}
Career
After postdoctoral stints in Minnesota and California, Abhik moved to UiT – The Arctic University of Norway in 1996, where he has remained ever since. He has had several secondary positions/affiliations: Senior Fellow of the San Diego Supercomputer Center{{Cite web|title=Understanding the Colors of Life: A Norway-California Collaboration|url=https://www.sdsc.edu/pub/envision/v15.1/porphyrins.html#Anchor-29853|last=Ghosh|first=Abhik|date=1998|website=www.sdsc.edu|access-date=2020-05-03}} at the University of California San Diego (1997–2004), Outstanding Younger Researcher awardee of the Research Council of Norway (2004–2010), a co-principal investigator at the national center of excellence Centre for Theoretical and Computational Chemistry (2007–2017), and a visiting professor at the University of Auckland, New Zealand, on many occasions (2006–2016). He has authored/coauthored over 300 scientific papers, which have been cited over 13,000 times with an h-index of 65 (according to Google Scholar).{{Google scholar id|hc3YyBIAAAAJ}} He has received many awards for teaching and research, including the Olav Thon Prize for Outstanding Teaching (2025) and the Hans Fischer Career Award for Lifetime Contributions to Porphyrin Chemistry. He is a member of several national and international academies including the Norwegian Academy of Science and Letters, the Norwegian Academy of Technological Sciences, the Academia Borealis, the European Academy of Sciences, and the Academia Europaea.
He edited two books, The Smallest Biomolecules: Diatomics and their Interactions with Heme Proteins (Elsevier, 2008),{{Cite book |title=The Smallest Biomolecules: Diatomics and their Interactions with Heme Proteins – 1st Edition |url=https://www.elsevier.com/books/the-smallest-biomolecules-diatomics-and-their-interactions-with-heme-proteins/ghosh/978-0-444-52839-1 |access-date=2020-05-03 |publisher=Elsevier|date=12 December 2007 |isbn=978-0-444-52839-1 }} a monograph on the subject, and Letters to a Young Chemist (Wiley, 2011), a popular science book on careers in chemistry research.{{Cite book |title=Letters to a Young Chemist |date=2011-03-21 |isbn=9781118007099 |editor-last=Ghosh |editor-first=Abhik |language=en |doi=10.1002/9781118007099}}[http://www.rsc.org/chemistryworld/Issues/2011/September/Reviews/WhatsItLikeToBeAChemist.asp "What's it like to be a chemist?"]. Royal Society of Chemistry Website. review by Simon Cotton{{Cite journal |last1=Haxton |first1=Katherine |year=2011 |title=Chemical counselling |journal=Nature Chemistry |volume=3 |issue=12 |page=905 |bibcode=2011NatCh...3..905H |doi=10.1038/nchem.1211 |doi-access=free}}{{cite journal |last1=Flynn |first1=Sarai |last2=Harris |first2=Markel |last3=Montes |first3=Luis D. |date=August 2012 |title=Review of Letters to a Young Chemist |journal=Journal of Chemical Education |publisher=American Chemical Society |volume=89 |issue=8 |pages=973–974 |bibcode=2012JChEd..89..973F |doi=10.1021/ed3003397}} In 2014, he coauthored Arrow Pushing in Inorganic Chemistry: A Logical Approach to the Chemistry of the Main Group Elements (Wiley) with Steffen Berg,{{Cite web |title=Arrow Pushing in Inorganic Chemistry: A Logical Approach to the Chemistry of the Main-Group Elements {{!}} Wiley |url=https://www.wiley.com/en-us/Arrow+Pushing+in+Inorganic+Chemistry%3A+A+Logical+Approach+to+the+Chemistry+of+the+Main+Group+Elements-p-9781118173985 |access-date=2020-05-03 |website=Wiley.com |language=en-us}} which won the 2015 Prose Award for 'best textbook in the Physical Sciences and Mathematics'.{{Cite web |title=2015 Award Winners |url=https://proseawards.com/winners/2015-award-winners/ |access-date=2020-05-03 |website=PROSE Awards |language=en-US}}{{Cite web |last=Vibeke |first=Os |title=Award to UiT chemists {{!}} UiT |url=https://uit.no/nyheter/artikkel?p_document_id=415113 |access-date=2020-05-03 |website=uit.no |language=nb}} He has served on the editorial advisory board of the Journal of Biological Inorganic Chemistry (1999–2001, 2005–2007) and currently serves on the editorial boards of the Journal of Porphyrins and Phthalocyanines (2000–), Journal of Inorganic Biochemistry (2007–present), and Inorganic Chemistry (2022-present).
Research
Ghosh has contributed to many areas of porphyrin-related research.
Computational bioinorganic chemistry. In the 1990s, Abhik reported some of the first large-scale ab initio and density functional theory calculations on porphyrins{{Cite journal |last=Ghosh |first=Abhik |date=1998-04-01 |title=First-Principles Quantum Chemical Studies of Porphyrins |journal=Accounts of Chemical Research |volume=31 |issue=4 |pages=189–198 |doi=10.1021/ar950033x |issn=0001-4842}} and other bioinorganic systems,{{Cite journal |last=Ghosh |first=Abhik |date=2006-09-01 |title=Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic arena |journal=Journal of Biological Inorganic Chemistry |language=en |volume=11 |issue=6 |pages=712–724 |doi=10.1007/s00775-006-0135-4 |issn=1432-1327 |pmid=16841211 |s2cid=22860795}} helping lay the foundation of the vibrant field of computational bioinorganic chemistry (or quantum bioinorganic chemistry). During this period, he shed light on the problem of diatomic ligand discrimination by heme proteins, debunking the then-prevalent steric model and emphasizing the key role of hydrogen bonding in the distal pocket. He also reported some of the first first-principles calculations on high-valent iron-oxo species.
Transition metal spin state energetics. In the 1990s, Abhik (partly in collaboration with Peter Taylor at the San Diego Supercomputer Center) showed that common exchange-correlation functionals yield highly divergent results on the energetics of low-energy spin states of transition metal complexes. He showed that classic pure functionals tend to unduly favor lower-spin states, while hybrid functionals such as B3LYP err in the other ditrections, favoring higher-spin states. Subsequently, he showed that GGA functionals based on the OPTX exchange functional sometimes provide a good solution to the problem, as does B3LYP* (with a lower proportion of exchange relative to B3LYP). However, a functional yielding the best spin state energetics does not necessarily yield the best results for other properties such as bond distances and spin densities.
Noninnocent ligands. He has had an abiding interest in the phenomenon of ligand noninnocence{{Cite journal |last1=Ganguly |first1=Sumit |last2=Ghosh |first2=Abhik |date=2019-06-21 |title=Seven Clues to Ligand Noninnocence: The Metallocorrole Paradigm |journal=Accounts of Chemical Research |volume=52 |issue=7 |pages=2003–2014 |doi=10.1021/acs.accounts.9b00115 |pmid=31243969 |s2cid=195695184 |issn=0001-4842}} and has contributed substantially to studying the phenomenon in transition metal corroles{{Cite journal |last=Ghosh |first=Abhik |date=December 2022 |title=Corrole and squeezed coordination |url=https://www.nature.com/articles/s41557-022-01096-8 |journal=Nature Chemistry |language=en |volume=14 |issue=12 |pages=1474 |doi=10.1038/s41557-022-01096-8 |pmid=36376391 |bibcode=2022NatCh..14.1474G |s2cid=253522402 |issn=1755-4349|url-access=subscription }}{{Cite journal |last1=Thomas |first1=Kolle E. |last2=Alemayehu |first2=Abraham B. |last3=Conradie |first3=Jeanet |last4=Beavers |first4=Christine M. |last5=Ghosh |first5=Abhik |date=2012-08-21 |title=The Structural Chemistry of Metallocorroles: Combined X-ray Crystallography and Quantum Chemistry Studies Afford Unique Insights |journal=Accounts of Chemical Research |volume=45 |issue=8 |pages=1203–1214 |doi=10.1021/ar200292d |pmid=22444488 |issn=0001-4842}}{{Cite journal |last=Ghosh |first=Abhik |date=2017-02-22 |title=Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations |journal=Chemical Reviews |volume=117 |issue=4 |pages=3798–3881 |doi=10.1021/acs.chemrev.6b00590 |pmid=28191934 |issn=0009-2665}} derivatives. Subsequently, he has used multiconfigurational ab initio calculations to tackle the longstanding question of local oxidation states in transition metal nitrosyls.{{Cite journal |last=Ghosh |first=Abhik |date=2005-12-01 |title=Metalloporphyrin−NO Bonding: Building Bridges with Organometallic Chemistry |journal=Accounts of Chemical Research |volume=38 |issue=12 |pages=943–954 |doi=10.1021/ar050121+ |issn=0001-4842 |pmid=16359166}}
Heavy element chemistry. From 2010 onward, he has developed the field of heavy element corrole derivatives, which are unusual size-mismatched metal-ligand assemblies that incorporate a large 4d or 5d transition metal ion within the sterically compressed central cavity of a corrole.{{Cite journal|last1=Alemayehu|first1=Abraham B.|last2=Thomas|first2=Kolle E.|last3=Einrem|first3=Rune F.|last4=Ghosh|first4=Abhik|date=2021-07-23|title=The Story of 5d Metallocorroles: From Metal–Ligand Misfits to New Building Blocks for Cancer Phototherapeutics|journal=Accounts of Chemical Research|volume=54 |issue=15 |language=en|pages=3095–3107| pmid=34297542|doi=10.1021/acs.accounts.1c00290 | pmc=8382219|issn=0001-4842|doi-access=free}} In this area he has reported some of the first examples of 99Tc,{{Cite journal|last1=Einrem|first1=Rune F.|last2=Braband|first2=Henrik|last3=Fox|first3=Thomas|last4=Vazquez-Lima|first4=Hugo|last5=Alberto|first5=Roger|last6=Ghosh|first6=Abhik|date=2016|title=Synthesis and Molecular Structure of 99Tc Corroles|journal=Chemistry – A European Journal|language=en|volume=22|issue=52|pages=18747–18751|doi=10.1002/chem.201605015|pmid=27802367|issn=1521-3765}} rhenium,{{Cite journal|last1=Einrem|first1=Rune F.|last2=Gagnon|first2=Kevin J.|last3=Alemayehu|first3=Abraham B.|last4=Ghosh|first4=Abhik|date=2016|title=Metal–Ligand Misfits: Facile Access to Rhenium–Oxo Corroles by Oxidative Metalation|journal=Chemistry – A European Journal|language=en|volume=22|issue=2|pages=517–520|doi=10.1002/chem.201504307|pmid=26639951|issn=1521-3765|doi-access=free}}{{Cite journal|last1=Alemayehu|first1=Abraham B.|last2=Teat|first2=Simon J.|last3=Borisov|first3=Sergey M.|last4=Ghosh|first4=Abhik|date=2020-04-10|title=Rhenium-Imido Corroles|journal=Inorganic Chemistry|volume=59|issue=9|language=en|pages=6382–6389|doi=10.1021/acs.inorgchem.0c00477|pmid=32275406|pmc=7311055|issn=0020-1669|doi-access=free}} osmium,{{Cite journal|last1=Alemayehu|first1=Abraham B.|last2=Gagnon|first2=Kevin J.|last3=Terner|first3=James|last4=Ghosh|first4=Abhik|date=2014|title=Oxidative Metalation as a Route to Size-Mismatched Macrocyclic Complexes: Osmium Corroles|journal=Angewandte Chemie International Edition|language=en|volume=53|issue=52|pages=14411–14414|doi=10.1002/anie.201405890|pmid=25346094|issn=1521-3773}}{{Cite journal|last1=Alemayehu|first1=Abraham B.|last2=McCormick|first2=Laura J.|last3=Vazquez-Lima|first3=Hugo|last4=Ghosh|first4=Abhik|date=2019-02-18|title=Relativistic Effects on a Metal–Metal Bond: Osmium Corrole Dimers|journal=Inorganic Chemistry|volume=58|issue=4|pages=2798–2806|doi=10.1021/acs.inorgchem.8b03391|pmid=30730723|hdl=10037/18144|s2cid=73426198 |issn=0020-1669|hdl-access=free}} platinum,{{Cite journal|last1=Ghosh|first1=Abhik|last2=Bendix|first2=Jesper|last3=Gagnon|first3=Kevin J.|last4=Beavers|first4=Christine M.|last5=Vazquez-Lima|first5=Hugo|last6=Alemayehu|first6=Abraham B.|date=2014-08-26|title=Platinum corroles|journal=Chemical Communications|language=en|volume=50|issue=76|pages=11093–11096|doi=10.1039/C4CC02548B|pmid=24911328|issn=1364-548X|doi-access=free|hdl=10037/25265|hdl-access=free}}{{Cite journal |last1=Alemayehu |first1=Abraham B. |last2=MCormick |first2=Laura J. |last3=Gagnon |first3=Kevin J. |last4=Borisov |first4=Sergey M. |last5=Ghosh |first5=Abhik |date=2018-08-31 |title=Stable Platinum(IV) Corroles: Synthesis, Molecular Structure, and Room-Temperature Near-IR Phosphorescence |journal=ACS Omega |language=en |volume=3 |issue=8 |pages=9360–9368 |doi=10.1021/acsomega.8b01149 |issn=2470-1343 |pmc=6645213 |pmid=31459069}} and gold{{Cite journal|last1=Alemayehu|first1=Abraham B.|last2=Ghosh|first2=Abhik|date=2011-02-01|title=Gold corroles|journal=Journal of Porphyrins and Phthalocyanines|volume=15|issue=2|pages=106–110|doi=10.1142/S1088424611003045|issn=1088-4246}}{{Cite journal|last1=Thomas|first1=Kolle E.|last2=Alemayehu|first2=Abraham B.|last3=Conradie|first3=Jeanet|last4=Beavers|first4=Christine|last5=Ghosh|first5=Abhik|date=2011-12-19|title=Synthesis and Molecular Structure of Gold Triarylcorroles|journal=Inorganic Chemistry|volume=50|issue=24|pages=12844–12851|doi=10.1021/ic202023r|pmid=22111600|issn=0020-1669|url=https://figshare.com/articles/Synthesis_and_Molecular_Structure_of_Gold_Triarylcorroles/2570239|url-access=subscription}} corroles. Despite their size-mismatched character, many of these complexes have proved rugged and found applications as near-IR phosphorescent photosensitizers in oxygen sensing{{Cite journal|last1=Ghosh|first1=Abhik|last2=Alemayehu|first2=Abraham|last3=Borisov|first3=Sergey M.|date=2016-06-16|title=Osmium-nitrido corroles as NIR indicators for oxygen sensors and triplet sensitizers for organic upconversion and singlet oxygen generation|journal=Journal of Materials Chemistry C|language=en|volume=4|issue=24|pages=5822–5828|doi=10.1039/C6TC01126H|issn=2050-7534|doi-access=free|hdl=10037/24918|hdl-access=free}}{{Cite journal|last1=Ghosh|first1=Abhik|last2=Alemayehu|first2=Abraham B.|last3=Einrem|first3=Rune F.|last4=Borisov|first4=Sergey M.|date=2019-05-15|title=Ambient-temperature near-IR phosphorescence and potential applications of rhenium-oxo corroles|journal=Photochemical & Photobiological Sciences|language=en|volume=18|issue=5|pages=1166–1170|doi=10.1039/C8PP00473K|pmid=30801581|issn=1474-9092|doi-access=|bibcode=2019PhPhS..18.1166B }} and photodynamic therapy as well as in dye-sensitized solar cells.{{Cite journal|last1=Alemayehu|first1=Abraham B.|last2=Day|first2=Nicholas U.|last3=Mani|first3=Tomoyasu|last4=Rudine|first4=Alexander B.|last5=Thomas|first5=Kolle E.|last6=Gederaas|first6=Odrun A.|last7=Vinogradov|first7=Sergei A.|last8=Wamser|first8=Carl C.|last9=Ghosh|first9=Abhik|date=2016-07-27|title=Gold Tris(carboxyphenyl)corroles as Multifunctional Materials: Room Temperature Near-IR Phosphorescence and Applications to Photodynamic Therapy and Dye-Sensitized Solar Cells|journal=ACS Applied Materials & Interfaces|volume=8|issue=29|pages=18935–18942|doi=10.1021/acsami.6b04269|pmid=27414087|issn=1944-8244}}{{Cite journal|last1=Einrem|first1=Rune F.|last2=Alemayehu|first2=Abraham B.|last3=Borisov|first3=Sergey M.|last4=Ghosh|first4=Abhik|last5=Gederaas|first5=Odrun A.|date=2020-04-27|title=Amphiphilic Rhenium-Oxo Corroles as a New Class of Sensitizers for Photodynamic Therapy|journal=ACS Omega|volume=5|issue=18|language=en|pages=10596–10601|doi=10.1021/acsomega.0c01090|pmid=32426618|pmc=7227046|issn=2470-1343|doi-access=free}}
Low-barrier hydrogen bonds and tautomerism. Early in his career, Abhik used X-ray photoelectron spectroscopy (XPS) to study short-strong hydrogen bonds in porphyrin-type molecules.{{Cite journal |last1=Ghosh |first1=Abhik |last2=Moulder |first2=John |last3=Bröring |first3=Martin |last4=Vogel |first4=Emanuel |date=2001 |title=X-Ray Photoelectron Spectroscopy of Porphycenes: Charge Asymmetry Across Low-Barrier Hydrogen Bonds |journal=Angewandte Chemie International Edition |volume=40 |issue=2 |pages=431–434 |doi=10.1002/1521-3773(20010119)40:2<431::aid-anie431>3.0.co;2-a |issn=1521-3773}} Years later, he reported the first example of a stable cis tautomer of a free-base porphyrin in the form of a termolecular hydrogen-bonded complex.{{Cite journal |last1=Thomas |first1=Kolle E. |last2=McCormick |first2=Laura J. |last3=Vazquez-Lima |first3=Hugo |last4=Ghosh |first4=Abhik |date=2017-08-14 |title=Stabilization and Structure of the cis Tautomer of a Free-Base Porphyrin |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201701965 |journal=Angewandte Chemie International Edition |language=en |volume=56 |issue=34 |pages=10088–10092 |doi=10.1002/anie.201701965 |osti=1436613 |pmid=28370984 |s2cid=6558055}} Subsequently, they found additional examples of porphyrin cis tautomers, proving that they can be reliably obtained from virtually any strongly saddled porphyrin co-crystallized with two molecules of a hydrogen donor (typically water or an alcohol).
Miscellaneous. Abhik has contributed significantly to a variety of problems in physical organic and physical inorganic chemistry, including transition metal complexes with unusually low{{Cite journal |last1=Tangen |first1=Espen |last2=Conradie |first2=Jeanet |last3=Ghosh |first3=Abhik |date=2007-03-01 |title=Bonding in Low-Coordinate Environments: Electronic Structure of Pseudotetrahedral Iron−Imido Complexes |url=https://pubs.acs.org/doi/10.1021/ct600318n |journal=Journal of Chemical Theory and Computation |volume=3 |issue=2 |pages=448–457 |doi=10.1021/ct600318n |pmid=26637027 |issn=1549-9618|url-access=subscription }}{{Cite journal |last1=Conradie |first1=Jeanet |last2=Ghosh |first2=Abhik |date=2007-05-01 |title=Electronic Structure of Trigonal-Planar Transition-Metal−Imido Complexes: Spin-State Energetics, Spin-Density Profiles, and the Remarkable Performance of the OLYP Functional |url=https://pubs.acs.org/doi/10.1021/ct600337j |journal=Journal of Chemical Theory and Computation |volume=3 |issue=3 |pages=689–702 |doi=10.1021/ct600337j |pmid=26627386 |issn=1549-9618|url-access=subscription }}{{Cite journal |last1=Wasbotten |first1=Ingar H. |last2=Ghosh |first2=Abhik |date=2007-09-01 |title=Spin-State Energetics and Spin-Crossover Behavior of Pseudotetrahedral Cobalt(III)−Imido Complexes. The Role of the Tripodal Supporting Ligand |url=https://pubs.acs.org/doi/10.1021/ic700543f |journal=Inorganic Chemistry |volume=46 |issue=19 |pages=7890–7898 |doi=10.1021/ic700543f |pmid=17713903 |issn=0020-1669|url-access=subscription }}{{Cite journal |last1=Aquilante |first1=Francesco |last2=Malmqvist |first2=Per-Åke |last3=Pedersen |first3=Thomas Bondo |last4=Ghosh |first4=Abhik |last5=Roos |first5=Björn Olof |date=2008-05-01 |title=Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of CoIII(diiminato)(NPh) |url=https://pubs.acs.org/doi/10.1021/ct700263h |journal=Journal of Chemical Theory and Computation |volume=4 |issue=5 |pages=694–702 |doi=10.1021/ct700263h |pmid=26621084 |issn=1549-9618|url-access=subscription }} and high coordination numbers, stereochemistry of sandwich compounds, metal-metal quadruple bonds{{Cite journal |last1=Alemayehu |first1=Abraham B. |last2=MCormick-MPherson |first2=Laura J. |last3=Conradie |first3=Jeanet |last4=Ghosh |first4=Abhik |date=2021-06-07 |title=Rhenium Corrole Dimers: Electrochemical Insights into the Nature of the Metal–Metal Quadruple Bond |journal=Inorganic Chemistry |language=en |volume=60 |issue=11 |pages=8315–8321 |doi=10.1021/acs.inorgchem.1c00986 |issn=0020-1669 |pmc=8278387 |pmid=33998801}}{{Cite journal |last1=Conradie |first1=Jeanet |last2=Vazquez-Lima |first2=Hugo |last3=Alemayehu |first3=Abraham B. |last4=Ghosh |first4=Abhik |date=2022-03-23 |title=Comparing Isoelectronic, Quadruple-Bonded Metalloporphyrin and Metallocorrole Dimers: Scalar-Relativistic DFT Calculations Predict a >1 eV Range for Ionization Potential and Electron Affinity |journal=ACS Physical Chemistry Au |volume=2 |issue=2 |pages=70–78 |doi=10.1021/acsphyschemau.1c00030 |pmc=9955219 |pmid=36855506}}{{Cite journal |last1=Ghosh |first1=Abhik |last2=Conradie |first2=Jeanet |date=2024-03-12 |title=Theoretical Photoelectron Spectroscopy of Quadruple-Bonded Dimolybdenum(II,II) and Ditungsten(II,II) Paddlewheel Complexes: Performance of Common Density Functional Theory Methods |journal=ACS Omega |volume=9 |issue=10 |pages=12237–12241 |doi=10.1021/acsomega.4c00269 |pmc=10938323 |pmid=38496970}}{{Cite journal |last1=Osterloh |first1=W. Ryan |last2=Conradie |first2=Jeanet |last3=Alemayehu |first3=Abraham B. |last4=Ghosh |first4=Abhik |last5=Kadish |first5=Karl M. |date=2023-02-01 |title=The Question of the Redox Site in Metal–Metal Multiple-Bonded Metallocorrole Dimers |url=https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00030 |journal=ACS Organic & Inorganic Au |volume=3 |issue=1 |pages=35–40 |doi=10.1021/acsorginorgau.2c00030|hdl=10037/30654 |hdl-access=free }} and quintuple bonds,{{Cite journal |last1=Ghosh |first1=Abhik |last2=Conradie |first2=Jeanet |date=2024-06-05 |title=Theoretical Photoelectron Spectroscopy of Metal–Metal Quintuple Bonds: Relativity-Driven Reordering of Frontier Orbitals |journal=ACS Organic & Inorganic Au |volume=4 |issue=3 |pages=301–305 |doi=10.1021/acsorginorgau.4c00002 |pmc=11157506 |pmid=38855336}} transition metal carbides,{{Cite journal |last1=Conradie |first1=Jeanet |last2=Alemayehu |first2=Abraham B. |last3=Ghosh |first3=Abhik |date=2022-04-06 |title=Iridium(VII)–Corrole Terminal Carbides Should Exist as Stable Compounds |journal=ACS Organic & Inorganic Au |volume=2 |issue=2 |pages=159–163 |doi=10.1021/acsorginorgau.1c00029 |pmc=9955125 |pmid=36855452}}{{Cite journal |last1=Ghosh |first1=Abhik |last2=Conradie |first2=Jeanet |date=2023-12-11 |title=A Theoretical Search for Stable Terminal Carbides |url=https://pubs.acs.org/doi/10.1021/acs.organomet.3c00363 |journal=Organometallics |volume=42 |issue=23 |pages=3366–3369 |doi=10.1021/acs.organomet.3c00363 |issn=0276-7333|hdl=10037/32428 |hdl-access=free }} low-valent main-group species,{{Cite journal |last1=Ghosh |first1=Abhik |last2=Conradie |first2=Jeanet |date=2023-04-05 |title=Theoretical Photoelectron Spectroscopy of Low-Valent Carbon Species: A ∼6 eV Range of Ionization Potentials among Carbenes, Ylides, and Carbodiphosphoranes |journal=ACS Organic & Inorganic Au |volume=3 |issue=2 |pages=92–95 |doi=10.1021/acsorginorgau.2c00045 |pmc=10080723 |pmid=37035281}}{{Cite journal |last1=Johansen |first1=Martin A. L. |last2=Ghosh |first2=Abhik |date=July 2023 |title=The curious chemistry of carbones |url=https://www.nature.com/articles/s41557-023-01241-x |journal=Nature Chemistry |language=en |volume=15 |issue=7 |pages=1042 |doi=10.1038/s41557-023-01241-x |pmid=37407673 |bibcode=2023NatCh..15.1042J |issn=1755-4349|url-access=subscription }}{{Cite journal |last1=Torstensen |first1=Kristian |last2=Ghosh |first2=Abhik |date=2024-02-07 |title=From Diaminosilylenes to Silapyramidanes: Making Sense of the Stability of Divalent Silicon Compounds |journal=ACS Organic & Inorganic Au |volume=4 |issue=1 |pages=102–105 |doi=10.1021/acsorginorgau.3c00041 |pmc=10853992 |pmid=38344019}} and the perfluoro cage effect.{{Cite journal |last1=Ghosh |first1=Abhik |last2=Conradie |first2=Jeanet |date=2023-02-07 |title=The Perfluoro Cage Effect: A Search for Electron-Encapsulating Molecules |journal=ACS Omega |volume=8 |issue=5 |pages=4972–4975 |doi=10.1021/acsomega.2c07374 |pmc=9910065 |pmid=36777561}}
Science communication
In collaboration with linguist Paul Kiparsky, Ghosh has written about the possible influence of Pāṇini's Sanskrit grammar, in particular the periodic Sanskrit alphabet (the Shiva sutras), on Mendeleev's conception of the periodic table, a potentially important, new insight into the history of the periodic table.{{Cite web|date=2019-10-04|title=The Grammar of the Elements|url=https://www.americanscientist.org/article/the-grammar-of-the-elements|access-date=2021-08-29|website=American Scientist|language=en}} Ghosh has also published popular articles on arrow pushing,{{Cite journal |last1=Ghosh |first1=Abhik |last2=Wamser |first2=Carl |date=2022 |title=Chemistry's Curly Arrow Hits 100 |url=https://www.americanscientist.org/article/chemistrys-curly-arrow-hits-100 |journal=American Scientist |volume=110 |issue=6 |pages=338 |doi=10.1511/2022.110.6.338 |issn=0003-0996 |s2cid=252883623|url-access=subscription }} on the occasion of the 100th anniversary of its first use by Sir Robert Robinson, and on the impact of relativity in chemistry,{{Cite journal |last1=Ghosh |first1=Abhik |last2=Ruud |first2=Kenneth |date=2023 |title=Relativity and the World of Molecules |url=https://www.americanscientist.org/article/relativity-and-the-world-of-molecules |journal=American Scientist |volume=111 |issue=3 |pages=160 |doi=10.1511/2023.111.3.160 |s2cid=258250885 |issn=0003-0996|url-access=subscription }} among many others.
As a queer chemist, Ghosh has been involved in a variety of diversity initiatives. The 2011 book Letters to a Young Chemist with a young woman as the protagonist and several contributions by leading female scientists has gone through numerous reprints and remains a bestseller. In 2020–2021, Ghosh published two biographical essays{{Cite journal|last=Ghosh|first=Abhik|year=2021|title=An Exemplary Gay Scientist and Mentor: Martin Gouterman (1931–2020)|journal=Angewandte Chemie|language=en|volume=133|issue=18|pages=9844–9854|doi=10.1002/ange.202012840|bibcode=2021AngCh.133.9844G |issn=1521-3757|doi-access=}}{{Cite web|last=Ghosh2020-11-18T09:45:00+00:00|first=Abhik|title=Martin Gouterman: the gay man behind the four-orbital model|url=https://www.chemistryworld.com/culture/martin-gouterman-the-gay-man-behind-the-four-orbital-model/4012388.article|access-date=2021-07-24|website=Chemistry World|language=en}} on the late Martin Gouterman, a noted porphyrin chemist and one of the first openly gay/LGBT scientists, drawing a parallel with astronomer and gay rights activist Frank Kameny (see LGBT history for a more general discussion). Subsequently, he co-edited a Virtual Issue on “Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists” highlighting queer authors in Inorganic Chemistry and other American Chemical Society journals.{{Cite web |title=Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists |url=https://pubs.acs.org/page/inocaj/vi/out-inorganic-chemistry-2022?ref=vi_journalhome |access-date=2022-04-15 |website=pubs.acs.org |language=en}}{{Cite journal |last1=Ghosh |first1=Abhik |last2=Tolman |first2=William B. |date=2022-04-11 |title=Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists |url=https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00729 |journal=Inorganic Chemistry |language=en |volume=61 |issue=14 |pages=5435–5441 |doi=10.1021/acs.inorgchem.2c00729 |pmid=35400150 |s2cid=248084131 |issn=0020-1669|url-access=subscription }}
References
{{reflist}}
Further reading
- {{cite magazine |last=Buntrock |first=R. E. |date=January 2012 |title=Review: Letters to a Young Chemist |magazine=Choice |page=913}}
{{authority control}}
{{DEFAULTSORT:Ghosh, Abhik}}
Category:Bioinorganic chemists
Category:20th-century Indian chemists
Category:21st-century Norwegian scientists
Category:Jadavpur University alumni
Category:University of Minnesota alumni
Category:Academic staff of the University of Tromsø
Category:Indian science writers
Category:Indian LGBTQ scientists
Category:Indian materials scientists
Category:21st-century Indian LGBTQ people
Category:Indian inorganic chemists