100 Gigabit Ethernet#100GBASE-LR4

{{short description|Technologies for computer networking}}

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard{{cite web | title = IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force | url = http://www.ieee802.org/3/ba/ | publisher = IEEE |work=official web site |date= June 19, 2010 |access-date=June 24, 2011}} and later by the 802.3bg-2011, 802.3bj-2014,{{cite web |title=100 Gb/s Backplane and Copper Cable Task Force |url=http://www.ieee802.org/3/bj/ |publisher=IEEE |work=official web site |access-date=2013-06-22 |archive-url=https://web.archive.org/web/20130228173601/http://www.ieee802.org/3/bj/ |archive-date=2013-02-28 |url-status=live }} 802.3bm-2015,{{cite web | title = 40 Gb/s and 100 Gb/s Fiber Optic Task Force | url = http://www.ieee802.org/3/bm/ | publisher = IEEE |work=official web site}} and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.such as IEEE 802.3bs-2017

The standards define numerous port types with different optical and electrical interfaces and different numbers of optical fiber strands per port. Short distances (e.g. 7 m) over twinaxial cable are supported while standards for fiber reach up to 80 km.

{{TOC limit|3}}

Standards development

On July 18, 2006, a call for interest for a High Speed Study Group (HSSG) to investigate new standards for high speed Ethernet was held at the IEEE 802.3 plenary meeting in San Diego.{{cite web

|url = http://www.ethernetalliance.org/news_events/press_release/press_072506

|title = IEEE Forms Higher Speed Study Group to Explore the Next Generation of Ethernet Technology

|date = 2006-07-25

|access-date = 2013-01-14

|archive-url = https://web.archive.org/web/20110726114559/http://www.ethernetalliance.org/news_events/press_release/press_072506

|archive-date = 2011-07-26

|url-status = dead

}}

The first 802.3 HSSG study group meeting was held in September 2006.{{cite web|url=http://www.ieee802.org/3/hssg/ |title=IEEE 802.3 Higher Speed Study Group |publisher=IEEE802.org |access-date=December 17, 2011}} In June 2007, a trade group called "Road to 100G" was formed after the NXTcomm trade show in Chicago.{{cite news |title= Group pushes 100 Gigabit Ethernet: The 'Road to 100G' Alliance is born |author= Jeff Caruso |work= Network World |date= June 21, 2007 |url= http://www.networkworld.com/newsletters/lans/2007/0618lan2.html |access-date=June 6, 2011 }}

On December 5, 2007, the Project Authorization Request (PAR) for the P802.3ba {{nowrap|40 Gbit/s}} and {{nowrap|100 Gbit/s}} Ethernet Task Force was approved with the following project scope:{{cite web |title= Project Authorization Request Approval notification: Approcal of P802.3ba |url= http://www.ieee802.org/3/ba/PAR/par_0308.pdf |publisher= IEEE Standards Association Standards Board |date= December 5, 2007 |access-date=June 6, 2011 }}

The purpose of this project is to extend the 802.3 protocol to operating speeds of {{nowrap|40 Gbit/s}} and {{nowrap|100 Gbit/s}} in order to provide a significant increase in bandwidth while maintaining maximum compatibility with the installed base of 802.3 interfaces, previous investment in research and development, and principles of network operation and management. The project is to provide for the interconnection of equipment satisfying the distance requirements of the intended applications.

The 802.3ba task force met for the first time in January 2008.{{cite web |url=http://www.networkworld.com/newsletters/lans/2008/0114lan1.html

| title=Standardization work on next Ethernet gets under way

| publisher=NetworkWorld

| last= Caruso

| first= Jeff

|date=2008-01-15}} This standard was approved at the June 2010 IEEE Standards Board meeting under the name IEEE Std 802.3ba-2010.{{cite web

|url=http://www.ieee802.org/3/ba/index.html

|title=IEEE P802.3ba 40Gbit/s and 100Gbit/s Ethernet Task Force

|date=2010-06-21}}

The first {{nowrap|40 Gbit/s}} Ethernet Single-mode Fibre PMD study group meeting was held in January 2010 and on March 25, 2010, the P802.3bg Single-mode Fibre PMD Task Force was approved for the {{nowrap|40 Gbit/s}} serial SMF PMD.

The scope of this project is to add a single-mode fiber Physical Medium Dependent (PMD) option for serial {{nowrap|40 Gbit/s}} operation by specifying additions to, and appropriate modifications of, IEEE Std 802.3-2008 as amended by the IEEE P802.3ba project (and any other approved amendment or corrigendum).

On June 17, 2010, the IEEE 802.3ba standard was approved.{{cite web |title= IEEE 802.3ba standard released |work= Help Net Security web site |date= June 21, 2010 |url= http://www.net-security.org/secworld.php?id=9448 |quote= The IEEE 802.3ba standard, ratified June 17, 2010, ...|access-date=June 24, 2011 |archive-url=https://web.archive.org/web/20210126153702/https://www.helpnetsecurity.com/2010/06/21/ieee-8023ba-standard-released/ |archive-date=2021-01-26 |url-status=dead}} In March 2011, the IEEE 802.3bg standard was approved. On September 10, 2011, the P802.3bj {{nowrap|100 Gbit/s}} Backplane and Copper Cable task force was approved.

The scope of this project is to specify additions to and appropriate modifications of IEEE Std 802.3 to add {{nowrap|100 Gbit/s}} 4-lane Physical Layer (PHY) specifications and management parameters for operation on backplanes and twinaxial copper cables, and specify optional Energy Efficient Ethernet (EEE) for {{nowrap|40 Gbit/s}} and {{nowrap|100 Gbit/s}} operation over backplanes and copper cables.

On May 10, 2013, the P802.3bm {{nowrap|40 Gbit/s}} and {{nowrap|100 Gbit/s}} Fiber Optic Task Force was approved.

This project is to specify additions to and appropriate modifications of IEEE Std 802.3 to add {{nowrap|100 Gbit/s}} Physical Layer (PHY) specifications and management parameters, using a four-lane electrical interface for operation on multimode and single-mode fiber optic cables, and to specify optional Energy Efficient Ethernet (EEE) for {{nowrap|40 Gbit/s}} and {{nowrap|100 Gbit/s}} operation over fiber optic cables. In addition, to add {{nowrap|40 Gbit/s}} Physical Layer (PHY) specifications and management parameters for operation on extended reach (>10 km) single-mode fiber optic cables.

Also on May 10, 2013, the P802.3bq 40GBASE-T Task Force was approved.{{cite web|url=http://www.ieee802.org/3/bq/P802.3bq.pdf|title=P802.3bq PAR}}

Specify a Physical Layer (PHY) for operation at {{nowrap|40 Gbit/s}} on balanced twisted-pair copper cabling, using existing Media Access Control, and with extensions to the appropriate physical layer management parameters.

On June 12, 2014, the IEEE 802.3bj standard was approved.

On February 16, 2015, the IEEE 802.3bm standard was approved.{{cite web|title=[802.3_100GNGOPTX] FW: P802.3bm-2015 Approval Notification |url=http://www.ieee802.org/3/100GNGOPTX/email/msg01408.html |website=ieee802.org |access-date=2015-02-19}}

On May 12, 2016, the IEEE P802.3cd Task Force started working to define next generation two-lane {{nowrap|100 Gbit/s}} PHY.{{cite web |title=IEEE 802.3 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force |date=May 12, 2016 |url=http://www.ieee802.org/3/cd/ }}

On May 14, 2018, the PAR for the IEEE P802.3ck Task Force was approved. The scope of this project is to specify additions to and appropriate modifications of IEEE Std 802.3 to add Physical Layer specifications and Management Parameters for {{nowrap|100 Gbit/s}}, {{nowrap|200 Gbit/s}}, and {{nowrap|400 Gbit/s}} electrical interfaces based on {{nowrap|100 Gbit/s}} signaling.{{cite web |url=http://www.ieee802.org/3/ck/P802_3ck_PAR_140518.pdf |title=P802.3ck |author=David Law |others=Ethernet Working Group (C/LM/WG802.3) |access-date=2018-11-30 |archive-url=https://web.archive.org/web/20180517010038/http://www.ieee802.org/3/ck/P802_3ck_PAR_140518.pdf |archive-date=2018-05-17 |url-status=dead }}

On December 5, 2018, the IEEE-SA Board approved the IEEE 802.3cd standard.

On November 12, 2018, the IEEE P802.3ct Task Force started working to define PHY supporting {{nowrap|100 Gbit/s}} operation on a single wavelength capable of at least 80 km over a DWDM system (using a combination of phase and amplitude modulation with coherent detection).{{cite web |title=IEEE P802.3ct Project Objectives |date=Nov 12, 2018 |url=http://www.ieee802.org/3/cn/proj_doc/3ct_Objectives_181113.pdf }}

In May 2019, the IEEE P802.3cu Task Force started working to define single-wavelength {{nowrap|100 Gbit/s}} PHYs for operation over SMF (Single-Mode Fiber) with lengths up to at least 2 km (100GBASE-FR1) and 10 km (100GBASE-LR1).{{cite web |title=IEEE P802.3cu Project Objectives |date=Nov 12, 2018 |url=http://www.ieee802.org/3/cu/Objectives_Approved_Sept_2019.pdf}}

In June 2020, the IEEE P802.3db Task Force started working to define a physical layer specification that supports {{nowrap|100 Gbit/s}} operation over 1 pair of MMF with lengths up to at least 50 m.{{cite web |title=Adopted Objectives |url=https://www.ieee802.org/3/db/P802d3db_Objectives_Approved_May_2020.pdf |website=Institute of Electrical and Electronics Engineers |publisher=IEEE P802.3db Task Force |access-date=June 3, 2021 |date=May 21, 2020}}

On February 11, 2021, the IEEE-SA Board approved the IEEE 802.3cu standard.{{cite web|url=https://www.ieee802.org/3/cu/email/msg00318.html|title=[802.3_100G-OPTX] P802.3cu Standard has been approved !! 🎉|website=www.ieee802.org}}

On June 16, 2021, the IEEE-SA Board approved the IEEE 802.3ct standard.{{cite web|url=https://www.ieee802.org/3/db/index.html|title=IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force|website=www.ieee802.org}}

On September 21, 2022, the IEEE-SA Board approved the IEEE 802.3ck and 802.3db standards.{{cite web | url=https://www.ieee802.org/3/100GEL/email/msg00977.html | title=[802.3_100GEL] FW: IEEE STD 802.3ck-2022, IEEE STD 802.3cs-2022, IEEE St }}

Early products

Optical signal transmission over a nonlinear medium is principally an analog design problem. As such, it has evolved slower than digital circuit lithography (which generally progressed in step with Moore's law). This explains why {{nowrap|10 Gbit/s}} transport systems existed since the mid-1990s, while the first forays into {{nowrap|100 Gbit/s}} transmission happened about 15 years later – a 10x speed increase over 15 years is far slower than the 2x speed per 1.5 years typically cited for Moore's law.

Nevertheless, at least five firms (Ciena, Alcatel-Lucent, MRV, ADVA Optical and Huawei) made customer announcements for {{nowrap|100 Gbit/s}} transport systems by August 2011, with varying degrees of capabilities.{{cite web| url=http://www.lightreading.com/document.asp?doc_id=209530 | title=Huawei's 100G is out of the door}} Although vendors claimed that {{nowrap|100 Gbit/s}} light paths could use existing analog optical infrastructure, deployment of high-speed technology was tightly controlled and extensive interoperability tests were required before moving them into service.

Designing routers or switches which support {{nowrap|100 Gbit/s}} interfaces is difficult. The need to process a {{nowrap|100 Gbit/s}} stream of packets at line rate without reordering within IP/MPLS microflows is one reason for this.

{{As of|2011}}, most components in the {{nowrap|100 Gbit/s}} packet processing path (PHY chips, NPUs, memories) were not readily available off-the-shelf or require extensive qualification and co-design. Another problem is related to the low-output production of {{nowrap|100 Gbit/s}} optical components, which were also not easily available{{snd}}especially in pluggable, long-reach or tunable laser flavors.

=Backplane=

NetLogic Microsystems announced backplane modules in October 2010.{{Cite press release |title=NetLogic Microsystems Announces Industry's First Dual-Mode Quad-Port 10GBASE-KR and 40GBASE-KR4 Backplane PHY with Energy Efficient Ethernet |date= October 13, 2010|website=Business Wire|publisher= NetLogic Microsystems |url= http://eon.businesswire.com/news/eon/20101013005208/en/NetLogic-Microsystems/PHY/Energy-Efficient-Ethernet |access-date= June 24, 2013|archive-url=https://archive.today/20130629085008/http://eon.businesswire.com/news/eon/20101013005208/en/NetLogic-Microsystems/PHY/Energy-Efficient-Ethernet|archive-date=29 June 2013}}

=Multimode fiber=

In 2009, Mellanox{{cite web|title=Mellanox Technologies |url=http://www.mellanox.com/content/pages.php?pg=press_release_item&rec_id=350|archive-url=https://web.archive.org/web/20110714071218/http://www.mellanox.com/content/pages.php?pg=press_release_item&rec_id=350|archive-date=July 14, 2011|url-status=dead|access-date=September 25, 2009}} and Reflex Photonics{{cite web |title=InterBOARD CFP 100GBASE-SR10 Parallel Optical Module |publisher=Reflex Photonics Inc. |url=http://www.reflexphotonics.com/interboard-cfp.htm |work=commercial web site |archive-url=https://web.archive.org/web/20100224065626/http://reflexphotonics.com/interboard-cfp.htm |archive-date=2010-02-24 |url-status=dead |access-date=June 7, 2011 }} announced modules based on the CFP agreement.

=Single mode fiber=

Finisar,{{cite web |title=Finisar Corporation – Finisar First to Demonstrate 40 Gigabit Ethernet LR4 CFP Transceiver Over 10 km of Optical Fiber at ECOC |url=http://investor.finisar.com/releasedetail.cfm?ReleaseID=410286 |archive-url=https://web.archive.org/web/20100227111501/http://investor.finisar.com/releaseDetail.cfm?ReleaseID=410286 |archive-date=February 27, 2010 |url-status=dead |access-date=September 25, 2009 }} Sumitomo Electric Industries,{{cite web|title=Sumitomo Electric develops 40GbE transceiver|url=http://www.lightwaveonline.com/top-stories/Sumitomo-Electric-develops-40GbE-transceiver--60446587.html|access-date=September 25, 2009|archive-url=https://web.archive.org/web/20150102021133/http://www.lightwaveonline.com/articles/2009/09/sumitomo-electric-develops-40gbe-transceiver--60446587.html|archive-date=January 2, 2015|url-status=dead}} and OpNext{{cite web|title= Hitachi and Opnext unveil receiver for 100GbE and demo 10 km transmission over SMF|url=http://www.semiconductor-today.com/news_items/2009/APRIL/OPNEXT_030409.htm|access-date=October 26, 2009}} all demonstrated singlemode 40 or {{nowrap|100 Gbit/s}} Ethernet modules based on the C form-factor pluggable (CFP) agreement at the European Conference and Exhibition on Optical Communication in 2009. The first lasers for 100 GBE were demonstrated in 2008.{{cite web | url=https://www.snia.org/forums/cmsi/knowledge/formfactors | title=SSD Form Factors | SNIA }}

=Compatibility=

Optical fiber IEEE 802.3ba implementations were not compatible with the numerous 40 and {{nowrap|100 Gbit/s}} line rate transport systems because they had different optical layer and modulation formats as the IEEE 802.3ba interface types show. In particular, existing {{nowrap|40 Gbit/s}} transport solutions that used dense wavelength-division multiplexing to pack four {{nowrap|10 Gbit/s}} signals into one optical medium were not compatible with the IEEE 802.3ba standard, which used either coarse WDM in 1310 nm wavelength region with four {{nowrap|25 Gbit/s}} or ten {{nowrap|10 Gbit/s}} channels, or parallel optics with four or ten optical fibers per direction.

=Test and measurement=

  • Quellan announced a test board in 2009.{{cite web |title=Quellan QLx411GRx 40G Evaluation Board |url=http://www.quellan.com/products/qlx411grx_eval_board.html |archive-url=https://web.archive.org/web/20090630133501/http://www.quellan.com/products/qlx411grx_eval_board.html |archive-date=2009-06-30 |url-status=dead |access-date=September 25, 2009 }}
  • Ixia developed Physical Coding Sublayer Lanes{{cite web|url=https://www.keysight.com/us/en/cmp/2020/network-visibility-network-test.html|title=Network Visibility and Network Test Products|website=Keysight}} and demonstrated a working 100GbE link through a test setup at NXTcomm in June 2008.{{cite web |title=Avago Technologies, Infinera & Ixia to demo the first 100 Gig Ethernet | website=YouTube |url=https://www.youtube.com/watch?v=WD20eVtGTCs |access-date=7 March 2012 |archive-url=https://web.archive.org/web/20140630063150/http://www.youtube.com/watch?v=WD20eVtGTCs |archive-date=2014-06-30 |url-status=live }} Ixia announced test equipment in November 2008.{{cite news |title=Ixia First to Offer 100 GE Testing Capability |publisher= Ixia |work= News release |date= September 29, 2008 |url= http://www.ixiacom.com/news_and_events/press_releases/display.php?skey=209 |access-date=June 7, 2011 }}{{cite web |title= 40 Gb/s and 100 Gb/s Testing: Overview |work= commercial web site |publisher= Ixia |url= http://www.ixiacom.com/products/higher_speed_ethernet_testing/index.php |access-date=June 7, 2011 }}
  • Discovery Semiconductors introduced optoelectronics converters for {{nowrap|100 Gbit/s}} testing of the 10 km and 40 km Ethernet standards in February 2009.{{cite web|title= Discovery Semiconductors – 100 Gb Ethernet (4 x 25 Gb/s) Quad PIN-TIA Optical Receiver |url= http://discoverysemi.com/Product%20Pages/DSCR801.php |work= commercial web site |access-date=June 7, 2011 }}
  • JDS Uniphase (now VIAVI Solutions) introduced test and measurement products for 40 and {{nowrap|100 Gbit/s}} Ethernet in August 2009.{{cite web |title= JDSU Introduces Industry's Most Robust 100 Gigabit Ethernet Test Suite |url= http://www.jdsu.com/news/news-releases/2009/081909.html |archive-url= https://archive.today/20130126222243/http://www.jdsu.com/news/news-releases/2009/081909.html |url-status= dead |archive-date= January 26, 2013 |work= News release |publisher= JDS Uniphase |date= August 19, 2009 |access-date= June 7, 2011 }}
  • Spirent Communications introduced test and measurement products in September 2009.{{cite web |title= 40/100 GbE: Testing the next generation of high speed Ethernet |work= commercial web site |publisher= Spirent Communications |url= http://www.spirent.com/Broadband/40-100G.aspx |access-date= June 7, 2011 |archive-date= December 21, 2010 |archive-url= https://web.archive.org/web/20101221103928/http://www.spirent.com/Broadband/40-100G.aspx |url-status= dead }}
  • EXFO demonstrated interoperability in January 2010.{{cite news |title= EXFO and Opnext Achieve Full Interoperability, Successfully Testing IEEE-Compliant 100 Gigabit Ethernet Optics |work= News release |date= January 11, 2010 |url= http://www.exfo.com/en/PressRoom/CorporateReleasesView.aspx?Id=453 |archive-url= https://archive.today/20120730164416/http://www.exfo.com/en/PressRoom/CorporateReleasesView.aspx?Id=453 |url-status= dead |archive-date= July 30, 2012 |access-date= June 7, 2011 }}
  • Xena Networks demonstrated test equipment at the Technical University of Denmark in January 2011.{{cite news |title= Workshop on 100 Gigabit Ethernet a huge success |work= DTU news |publisher= Technical University of Denmark |date= February 2, 2011 |url= http://www.dtu.dk/English/About_DTU/News.aspx?guid={4518DC72-CA94-4D28-BB45-F7627FE581AA} |access-date= June 7, 2011 |archive-url= https://web.archive.org/web/20110719152736/http://www.dtu.dk/English/About_DTU/News.aspx?guid=%7B4518DC72-CA94-4D28-BB45-F7627FE581AA%7D |archive-date= 2011-07-19 |url-status= dead }}{{cite news |title= Dansk virksomhed klar med test til 100 Gb ethernet |author= Torben R. Simonsen |work= Elektronik Branchen |date= January 26, 2011 |url= http://elektronikbranchen.dk/nyhed/dansk-virksomhed-klar-med-test-til-100-gb-ethernet |access-date= June 7, 2011 |archive-url= https://archive.today/20120715170325/http://elektronikbranchen.dk/nyhed/dansk-virksomhed-klar-med-test-til-100-gb-ethernet |archive-date= 2012-07-15 |url-status= dead }} (Danish)
  • Calnex Solutions introduced 100GbE Synchronous Ethernet synchronisation test equipment in November 2014.{{cite web|title = Calnex Solutions Limited {{!}} Calnex Solutions Launches Industry-first 100GbE Tester for Synchronisation|url = http://www.realwire.com/releases/Calnex-Solutions-Launches-Industry-first-100GbE-Tester-for-Synchronisation|website = RealWire|date = 19 November 2014|access-date = 2015-10-22}}
  • Spirent Communications introduced the Attero-100G for 100GbE and 40GbE impairment emulation in April 2015.{{cite web|title = Industry's First 100G Impairment Emulator Helps Reduce the Effect of Latency in High Speed Ethernet Networks|url = http://corporate.spirent.com/News-Media/Press-Releases/Redirect?id=2015/4_15_15_Spirent_Unveils_100G_Impairment_Emulator|date = 15 Apr 2015|website = corporate.spirent.com|access-date = 2015-10-22|archive-url = https://web.archive.org/web/20151222134128/http://corporate.spirent.com/News-Media/Press-Releases/Redirect?id=2015%2F4_15_15_Spirent_Unveils_100G_Impairment_Emulator|archive-date = 2015-12-22|url-status = dead}}{{cite web|url=http://www.spirent.com/Products/Attero|title=Attero |publisher=Spirent|website=www.spirent.com|access-date=15 November 2017}}
  • VeEX{{cite web|url=https://ww2.frost.com/news/press-releases/frost-sullivan-recognizes-veexs-technology-development-and-acquisition-based-growth-network-deployment-and-field-service-market/|title=Frost & Sullivan Recognizes VeEX's Technology Development|access-date=2017-02-09|archive-date=2015-06-23|archive-url=https://web.archive.org/web/20150623003239/http://ww2.frost.com/news/press-releases/frost-sullivan-recognizes-veexs-technology-development-and-acquisition-based-growth-network-deployment-and-field-service-market/|url-status=dead}} introduced its CFP-based UX400-100GE and 40GE test and measurement platform in 2012,{{cite web|url=https://veexinc.com/en-us/NewsAndEvents/PR-18JUL2012000000|title=VeEX introduces industry's smallest multiservice, multitasking analyzer for 40/100G networks. {{!}} VeEX Inc. {{!}} The Verification EXperts|website=veexinc.com|access-date=2017-02-09}} followed by CFP2, CFP4, QSFP28 and QSFP+ versions in 2015.{{cite web|url=http://advanced-television.com/2015/06/08/veex-enhances-ux400-platform-with-next-gen-cfp2-and-cfp4-test-modules/|title=VeEX enhances UX400 Platform with next-gen CFP2 and CFP4 test modules {{!}}|website=advanced-television.com|date=8 June 2015 |language=en-GB|access-date=2017-02-09}}{{cite web|url=http://advanced-television.com/2015/07/09/veex-unveils-600g-testing-for-its-ux400-platform/|title=VeEX unveils 600G testing for its UX400 platform {{!}}|website=advanced-television.com|date=9 July 2015 |language=en-GB|access-date=2017-02-09}}

=Mellanox Technologies=

Mellanox Technologies introduced the ConnectX-4 100GbE single and dual port adapter in November 2014.{{cite web|url=https://www.mellanox.com/news/press_release/mellanox-enables-end-end-100gbs-interconnect-solution-introduction-connectx-4-adapter|title=Mellanox Enables End-to-End 100Gb/s Interconnect Solution with Introduction of ConnectX-4 Adapter {{pipe}} NVIDIA|website=www.mellanox.com}} In the same period, Mellanox introduced availability of 100GbE copper and fiber cables.{{cite web|url=https://www.mellanox.com/news/press_release/mellanox-announces-availability-100gbs-direct-attach-copper-and-active-optical-cables|title=Mellanox Announces Availability of 100Gb/s Direct Attach Copper and Active Optical Cables {{pipe}} NVIDIA|website=www.mellanox.com}} In June 2015, Mellanox introduced the Spectrum 10, 25, 40, 50 and 100GbE switch models.{{cite web|url=https://www.mellanox.com/news/press_release/mellanox-introduces-worlds-first-25100-gigabit-open-ethernet-based-switch|title=Mellanox Introduces the World's First 25/100 Gigabit Open Ethernet-based Switch {{pipe}} NVIDIA|website=www.mellanox.com}}

=Aitia=

Aitia International introduced the C-GEP FPGA-based switching platform in February 2013.{{Cite news |title= Aitia C-GEP development platform? |work= FPGA Networking |date= May 1, 2013 |author= Pal Varga |url= https://www.researchgate.net/publication/277012542 |access-date= June 6, 2015 }} Aitia also produce 100G/40G Ethernet PCS/PMA+MAC IP cores for FPGA developers and academic researchers.{{Cite news |title= FPGA IP core for 100G/40G ethernet? |work= FPGA Networking |date= June 6, 2016 |author= Pal Varga |url= http://www.fpganetworking.com/index.html |access-date= June 6, 2016 }}

=Arista=

Arista Networks introduced the 7500E switch (with up to 96 100GbE ports) in April 2013.{{Cite news |title= Arista heading off Cisco/Insieme at 100G SDNs? |work= Network World |date= May 1, 2013 |author= Jim Duffy |url= http://www.networkworld.com/news/2013/050113-arista-269279.html |access-date= May 24, 2013 |archive-url= https://web.archive.org/web/20130517030020/http://www.networkworld.com/news/2013/050113-arista-269279.html |archive-date= 2013-05-17 |url-status= dead }} In July 2014, Arista introduced the 7280E switch (the world's first top-of-rack switch with 100G uplink ports).{{Cite news |title= Arista Leading 100GbE Charge With 7280E Switch Series Launch |work= CRN |date= July 16, 2014 |author= Kristin Bent |url= http://www.crn.com/news/networking/300073437/arista-leading-100gbe-charge-with-7280e-switch-series-launch.htm |access-date= February 18, 2016 }}

=Extreme Networks=

Extreme Networks introduced a four-port 100GbE module for the BlackDiamond X8 core switch in November 2012.{{cite web|last=Duffy|first=Jim|title=Extreme joins Cisco, Brocade, Huawei at 100G|url=http://www.networkworld.com/news/2012/111312-extreme-blackdiamond-264212.html|publisher=Network World|access-date=January 18, 2013|page=1|date=November 13, 2012|archive-url=https://web.archive.org/web/20130123175425/http://www.networkworld.com/news/2012/111312-extreme-blackdiamond-264212.html|archive-date=2013-01-23|url-status=dead}}

=Dell=

Dell's Force10 switches support {{nowrap|40 Gbit/s}} interfaces. These {{nowrap|40 Gbit/s}} fiber-optical interfaces using QSFP+ transceivers can be found on the Z9000 distributed core switches, S4810 and S4820{{cite web|title=Dell Force10 S-series model comparison|url=http://www.dell.com/us/enterprise/p/force10-s-series/pd?c=us&s=biz|access-date=2 March 2013}} as well as the blade-switches MXL and the IO-Aggregator. The Dell PowerConnect 8100 series switches also offer {{nowrap|40 Gbit/s}} QSFP+ interfaces.{{cite web|url=http://www.dell.com/us/enterprise/p/powerconnect-8100/pd|title=Technical details PowerConnect 8100 series|access-date=2 March 2013}}

=Chelsio=

Chelsio Communications introduced {{nowrap|40 Gbit/s}} Ethernet network adapters (based on the fifth generation of its Terminator architecture) in June 2013.{{cite web |url=http://www.chelsio.com/chelsio-delivers-40gb-ethernet-adapter-40gbe-sets-new-performance-bar-for-high-speed-ethernet/ |title=Chelsio Delivers 40Gb Ethernet Adapter (40GbE), Sets new performance bar for high speed Ethernet |work=Press release |date=June 11, 2013 |access-date=June 20, 2013 |archive-url=https://web.archive.org/web/20130718080842/http://www.chelsio.com/chelsio-delivers-40gb-ethernet-adapter-40gbe-sets-new-performance-bar-for-high-speed-ethernet/ |archive-date=2013-07-18 |url-status=live }}

=Telesoft Technologies Ltd=

Telesoft Technologies announced the dual 100G PCIe accelerator card, part of the MPAC-IP series.{{cite web |url=http://telesoft-technologies.com/technologies/mpac-ip-7200-dual-100g-ethernet-accelerator-card |title=MPAC-IP 7200 - Custom Telecom Solutions - Telesoft Technologies |access-date=2015-06-08 |archive-url=https://web.archive.org/web/20150703090557/http://telesoft-technologies.com/technologies/mpac-ip-7200-dual-100g-ethernet-accelerator-card |archive-date=2015-07-03 |url-status=dead }} Telesoft also announced the STR 400G (Segmented Traffic Router){{cite web |url=http://telesoft-technologies.com/technologies/str-400g |title=STR 400G - Custom Telecom Solutions - Telesoft Technologies |access-date=2015-06-08 |archive-url=https://web.archive.org/web/20150703101344/http://telesoft-technologies.com/technologies/str-400g |archive-date=2015-07-03 |url-status=dead }} and the 100G MCE (Media Converter and Extension).{{cite web |url=http://telesoft-technologies.com/technologies/100g-mce-media-converter-and-extension |title=100G MCE (Media Converter & Extension) - Custom Telecom Solutions - Telesoft Technologies |access-date=2015-06-08 |archive-url=https://web.archive.org/web/20150703070054/http://telesoft-technologies.com/technologies/100g-mce-media-converter-and-extension |archive-date=2015-07-03 |url-status=dead }}

Commercial trials and deployments

Unlike the "race to {{nowrap|10 Gbit/s}}" that was driven by the imminent need to address growth pains of the Internet in the late 1990s, customer interest in {{nowrap|100 Gbit/s}} technologies was mostly driven by economic factors. The common reasons to adopt the higher speeds were:{{cite web|url=http://conference.vde.com/ecoc-2009/programs/documents/ecoc09-100g-ws-juniper-ceuppens.pdf|title=100G in routers|website=Juniper Networks Presentation at ECOC 2009}}

  • to reduce the number of optical wavelengths ("lambdas") used and the need to light new fiber
  • to utilize bandwidth more efficiently than {{nowrap|10 Gbit/s}} link aggregate groups
  • to provide cheaper wholesale, internet peering and data center connectivity
  • to skip the relatively expensive {{nowrap|40 Gbit/s}} technology and move directly from 10 to {{nowrap|100 Gbit/s}}

=Alcatel-Lucent=

In November 2007, Alcatel-Lucent held the first field trial of {{nowrap|100 Gbit/s}} optical transmission. Completed over a live, in-service 504 kilometre portion of the Verizon network, it connected the Florida cities of Tampa and Miami.{{cite web | url= http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_2007/News_Article_000653.xml | title= Verizon Successfully Completes Industry's First Field Trial of 100 Gbps Optical Network Transmission | access-date= 2018-11-30 | archive-url= https://web.archive.org/web/20140714194745/http://www3.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_2007%2FNews_Article_000653.xml | archive-date= 2014-07-14 | url-status= dead }}

100GbE interfaces for the 7450 ESS/7750 SR service routing platform were first announced in June 2009, with field trials with Verizon,{{cite web | url=http://www.alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_2010/News_Article_002116.xml | title=Verizon completes industry-leading 100G Ethernet field trial | access-date=2018-11-30 | archive-url=https://web.archive.org/web/20160611060905/http://alcatel-lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLd4x3tXDUL8h2VAQAURh_Yw!!?LMSG_CABINET=Docs_and_Resource_Ctr&LMSG_CONTENT_FILE=News_Releases_2010%2FNews_Article_002116.xml | archive-date=2016-06-11 | url-status=dead }} T-Systems and Portugal Telecom taking place in June–September 2010. In September 2009, Alcatel-Lucent combined the 100G capabilities of its IP routing and optical transport portfolio in an integrated solution called Converged Backbone Transformation.{{cite web | url= http://www.alcatel-lucent.com/convergedbackbone/ | title= A game-changing approach to the core}}

In June 2011, Alcatel-Lucent introduced a packet processing architecture known as FP3, advertised for {{nowrap|400 Gbit/s}} rates.{{cite news |url= https://www.engadget.com/2011/06/29/alcatel-lucents-fp3-network-processor-routes-at-400mbps-handle/ | title=Alcatel-Lucent's FP3 network processor routes at 400Gbps |work= Press release |date= June 29, 2011 |access-date= June 24, 2013 }} Alcatel-Lucent announced the XRS 7950 core router (based on the FP3) in May 2012.{{cite news |url= https://money.cnn.com/2012/05/21/technology/alcatel-lucent-fastest-router/ |author= David Goldman |work= CNN Money | title=How Alcatel-Lucent made the Internet 5 times faster |date= May 21, 2012 |access-date= June 24, 2013 }}{{cite web |url=http://www.alcatel-lucent.com/100ge/ |title=100 Gigabit Ethernet (100GE): Services unleashed at speed |work=Company web site |url-status=dead |archive-url=https://web.archive.org/web/20121116131825/http://www.alcatel-lucent.com/100ge/index.html |archive-date=2012-11-16 |access-date=June 24, 2013 }}

=Brocade=

Brocade Communications Systems introduced their first 100GbE products (based on the former Foundry Networks MLXe hardware) in September 2010.{{cite web|url=http://www.networkworld.com/news/2010/090110-brocade.html|title=Brocade set to unveil 100G Ethernet|archive-url=https://web.archive.org/web/20121015151424/http://www.networkworld.com/news/2010/090110-brocade.html|archive-date=2012-10-15|url-status=dead|website=Brocade}} In June 2011, the new product went live at the AMS-IX traffic exchange point in Amsterdam.{{cite web |url=http://www.ams-ix.net/3-new-services-are-launched-by-ams-ix-at-more-ip-event/ |title=3 new services are launched by AMS-IX at MORE IP event |access-date=2011-09-05 |archive-url=https://web.archive.org/web/20120719064233/http://ams-ix.net/3-new-services-are-launched-by-ams-ix-at-more-ip-event/ |archive-date=2012-07-19 |url-status=dead }}

=Cisco=

Cisco Systems and Comcast announced their 100GbE trials in June 2008.{{cite web|url=http://www.cisco.com/web/EA/expomorocco2009/docs/cisco_Expo_2009_NGN_Transport_published.pdf|title=Cisco NGN Transport Solutions}} However, it is doubtful that this transmission could approach {{nowrap|100 Gbit/s}} speeds when using a {{nowrap|40 Gbit/s}} per slot CRS-1 platform for packet processing. Cisco's first deployment of 100GbE at AT&T and Comcast took place in April 2011.{{cite web|last=Matsumoto |first=Craig |url=http://www.lightreading.com/document.asp?doc_id=206615&site=lr_cable |title=AT&T, Comcast Go Live With 100G |publisher=Light Reading |date=April 11, 2011 |access-date=December 17, 2011}} In the same year, Cisco tested the 100GbE interface between CRS-3 and a new generation of their ASR9K edge router model.{{cite web |last=Liu |first=Stephen |url=http://blogs.cisco.com/sp/cisco-live-showing-off-100ge-on-crs-3-and-asr-9000-series/ |title=Cisco Live! Showing Off 100GbE on CRS-3 and ASR 9000 Series |publisher=blogs.cisco.com |date=July 25, 2011 |access-date=December 17, 2011 |archive-date=December 21, 2011 |archive-url=https://web.archive.org/web/20111221055236/http://blogs.cisco.com/sp/cisco-live-showing-off-100ge-on-crs-3-and-asr-9000-series/ |url-status=dead }} In 2017, Cisco announced a 32 port 100GbE Cisco Catalyst 9500 Series switch {{cite web|url=https://newsroom.cisco.com/press-release-content?articleId=1854555|title=Cisco unveils network of the future that can learn, adapt and evolve |publisher=newsroom.cisco.com |date=June 20, 2017 |access-date=September 10, 2019}} and in 2019 the modular Catalyst 9600 Series switch with a 100GbE line card {{cite web|url=https://blogs.cisco.com/enterprise/looking-forward-catalyst-9600-switch-and-9100-access-point-meraki|title=Your Catalyst for the Past, Present, and Future |publisher=blogs.cisco.com |date=April 29, 2019 |access-date=September 10, 2019}}

=Huawei=

In October 2008, Huawei presented their first 100GbE interface for their NE5000e router.{{cite web |url=http://www.huawei.com/en/about-huawei/newsroom/press-release/hw-076816-corporate-2-optical-dwdmbackbone-transport_network.htm |title=Huawei Successfully Develops 100 Gigabit Ethernet WDM Prototype |access-date=2011-09-05 |archive-url=https://web.archive.org/web/20120324021345/http://www.huawei.com/en/about-huawei/newsroom/press-release/hw-076816-corporate-2-optical-dwdmbackbone-transport_network.htm |archive-date=2012-03-24 |url-status=dead }} In September 2009, Huawei also demonstrated an end-to-end {{nowrap|100 Gbit/s}} link.{{cite web | url=http://www.huawei.com/en/about-huawei/newsroom/press-release/hw-062645-corporate-ran-wnm-ran-wnp-ds-wisg-vs-win.htm | title=Huawei Launches World' s First End-to-End 100G Solutions | access-date=2011-09-05 | archive-url=https://web.archive.org/web/20121011115902/http://www.huawei.com/en/about-huawei/newsroom/press-release/hw-062645-corporate-ran-wnm-ran-wnp-ds-wisg-vs-win.htm | archive-date=2012-10-11 | url-status=dead }} It was mentioned that Huawei's products had the self-developed NPU "Solar 2.0 PFE2A" onboard and was using pluggable optics in CFP.

In a mid-2010 product brief, the NE5000e linecards were given the commercial name LPUF-100 and credited with using two Solar-2.0 NPUs per 100GbE port in opposite (ingress/egress) configuration.{{cite web |url=http://www.huawei.com/en/static/hw-076756.pdf |title=Huawei E2E 100G Solution |access-date=2011-09-05 |archive-url=https://web.archive.org/web/20120514042811/http://www.huawei.com/en/static/HW-076756.pdf |archive-date=2012-05-14 |url-status=dead }} Nevertheless, in October 2010, the company referenced shipments of NE5000e to Russian cell operator "Megafon" as "40 GBPS/slot" solution, with "scalability up to" {{nowrap|100 Gbit/s}}.{{cite web | url=http://www.cellular-news.com/story/45839.php| title=Russia's MegaFon Awards Backbone Contract to Huawei| date=3 June 2020}}

In April 2011, Huawei announced that the NE5000e was updated to carry 2x100GbE interfaces per slot using LPU-200 linecards.{{cite web | url=http://www.huawei.com/ilink/en/about-huawei/newsroom/press-release/092592?KeyTemps=200G,Router| title=Huawei Unveils the World's First 200G High-Speed Line Card for Routers }} In a related solution brief, Huawei reported 120 thousand Solar 1.0 integrated circuits shipped to customers, but no Solar 2.0 numbers were given.{{cite web| url=http://www.huawei.com/ilink/en/solutions/expand-broadband/HW_092902?KeyTemps=# | title=Huawei 200G Solution }} Following the August 2011 trial in Russia, Huawei reported paying {{nowrap|100 Gbit/s}} DWDM customers, but no 100GbE shipments on NE5000e.{{cite web |url=http://www.huawei.com/ru/catalog.do?id=4630 |title=Оборудование Huawei 100G успешно прошло тестирование в России |access-date=2011-09-05 |archive-url=https://web.archive.org/web/20120225193656/http://www.huawei.com/ru/catalog.do?id=4630 |archive-date=2012-02-25 |url-status=dead }}

=Juniper=

Juniper Networks announced 100GbE for its T-series routers in June 2009.{{cite web| url=http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html | title= Juniper networks introduces breakthrough 100 gigabit Ethernet interface for t series routers }} The 1x100GbE option followed in Nov 2010, when a joint press release with academic backbone network Internet2 marked the first production 100GbE interfaces going live in real network.{{cite web| url=http://www.networkworld.com/community/blog/internet2-racing-ahead-100g-ethernet-network| title= Internet2 racing ahead with 100G Ethernet network | date= 12 November 2010 }}

In the same year, Juniper demonstrated 100GbE operation between core (T-series) and edge (MX 3D) routers.{{cite web | url=http://investor.juniper.net/phoenix.zhtml?c=69801&p=irol-newsArticle&ID=1496199&highlight= | title=Juniper Demonstrates Industry's First Live 100G Traffic From the Network Core to Edge | access-date=2011-09-05 | archive-url=https://archive.today/20120709040226/http://investor.juniper.net/phoenix.zhtml?c=69801&p=irol-newsArticle&ID=1496199&highlight= | archive-date=2012-07-09 | url-status=dead }} Juniper, in March 2011, announced first shipments of 100GbE interfaces to a major North American service provider (Verizon{{cite web|url=http://www.verizonbusiness.com/about/news/pr-25717-en-Verizon+First+Service+Provider+to+Announce+100G+Deployment+on+U.S.+Network.xml |

title=Verizon First Service Provider to Announce 100G Deployment on U.S. Network }}).

In April 2011, Juniper deployed a 100GbE system on the UK education network JANET.{{cite web|url=http://www.uknof.org.uk/uknof19/Evans-Deploying-100Ge.pdf|title=Deploying 100GE|website=JANET UK}} In July 2011, Juniper announced 100GbE with Australian ISP iiNet on their T1600 routing platform.{{cite web|url=http://www.juniper.net/au/en/company/press-center/press-releases/2011/pr_2011_07_07-07_00.html | title=iiNet Pioneers 100GbE with new Juniper Networks Backbone}} Juniper started shipping the MPC3E line card for the MX router, a 100GbE CFP MIC, and a 100GbE LR4 CFP optics in March 2012{{Citation needed|date=July 2016}}. In Spring 2013, Juniper Networks announced the availability of the MPC4E line card for the MX router that includes 2 100GbE CFP slots and 8 10GbE SFP+ interfaces{{Citation needed|date=July 2016}}.

In June 2015, Juniper Networks announced the availability of its CFP-100GBASE-ZR module which is a plug & play solution that brings 80 km 100GbE to MX & PTX based networks.{{cite web| url=http://forums.juniper.net/t5/Packet-Optical-Technologies/Life-Begins-at-40-km-100G-ZR-Optics/ba-p/276483 | title= Juniper networks - Life Begins at 40(km) - 100G ZR Optics }} The CFP-100GBASE-ZR module uses DP-QPSK modulation and coherent receiver technology with an optimized DSP and FEC implementation. The low-power module can be directly retrofitted into existing CFP sockets on MX and PTX routers.

Standards

The IEEE 802.3 working group is concerned with the maintenance and extension of the Ethernet data communications standard. Additions to the 802.3 standard{{cite web | url=http://standards.ieee.org/about/get/802/802.3.html | archive-url=https://archive.today/20121205103819/http://standards.ieee.org/about/get/802/802.3.html | url-status=dead | archive-date=December 5, 2012 | title=IEEE 802.3 standard}} are performed by task forces which are designated by one or two letters. For example, the 802.3z task force drafted the original Gigabit Ethernet standard.

802.3ba is the designation given to the higher speed Ethernet task force which completed its work to modify the 802.3 standard to support speeds higher than {{nowrap|10 Gbit/s}} in 2010.

The speeds chosen by 802.3ba were 40 and {{nowrap|100 Gbit/s}} to support both end-point and link aggregation needs respectively. This was the first time two different Ethernet speeds were specified in a single standard. The decision to include both speeds came from pressure to support the {{nowrap|40 Gbit/s}} rate for local server applications and the {{nowrap|100 Gbit/s}} rate for internet backbones. The standard was announced in July 2007{{cite web |url=https://arstechnica.com/news.ars/post/20070724-new-ethernet-standard-not-40-gbps-not-100-but-both.html

| title=New Ethernet standard: not 40Gbps, not 100, but both

| publisher=ars technica

| last= Reimer

| first= Jeremy

|date=2007-07-24}} and was ratified on June 17, 2010.

File:QSFP-40G-SR4 Transceiver.jpg form factor]]

The 40/100 Gigabit Ethernet standards encompass a number of different Ethernet physical layer (PHY) specifications. A networking device may support different PHY types by means of pluggable modules. Optical modules are not standardized by any official standards body but are in multi-source agreements (MSAs). One agreement that supports 40 and 100 Gigabit Ethernet is the CFP MSA{{cite web |title=CFP Multi-Source Agreement |url=http://www.cfp-msa.org/ |work=official web site |archive-url=https://web.archive.org/web/20090404045046/http://www.cfp-msa.org/ |archive-date=2009-04-04 |url-status=live |access-date=June 24, 2011 }} which was adopted for distances of 100+ meters. QSFP and CXP connector modules support shorter distances.{{cite web

|url = http://www.nanog.org/meetings/nanog47/presentations/Tuesday/Hankins_IEEE_N47_Tues.pdf

|title = IEEE P802.3ba 40 GbE and 100 GbE Standards Update |access-date=June 24, 2011

|author= Greg Hankins | date = October 20, 2009 | work = North American Network Operators' Group (NANOG) 47 Presentations

}}

The standard supports only full-duplex operation.{{cite web |title=IEEE P802.3ba Objectives |author=John D'Ambrosia |url=http://www.ieee802.org/3/ba/PAR/P802.3ba_Objectives_0709.pdf |archive-url=https://web.archive.org/web/20090824030540/http://www.ieee802.org/3/ba/PAR/P802.3ba_Objectives_0709.pdf |archive-date=2009-08-24 |url-status=live |access-date=September 25, 2009 }} Other objectives include:

  • Preserve the 802.3 Ethernet frame format utilizing the 802.3 MAC
  • Preserve minimum and maximum frame size of current 802.3 standard
  • Support a bit error rate (BER) better than or equal to 10−12 at the MAC/PLS service interface
  • Provide appropriate support for OTN
  • Support MAC data rates of 40 and {{nowrap|100 Gbit/s}}
  • Provide physical layer specifications (PHY) for operation over single-mode optical fiber (SMF), laser optimized multi-mode optical fiber (MMF) OM3 and OM4, copper cable assembly, and backplane.

The following nomenclature is used for the physical layers:{{cite web |title=Chief Editor's Report |author=Ilango Ganga |url= http://www.ieee802.org/3/ba/public/may08/ganga_02_0508.pdf |date= May 13, 2009|work= IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force public record |access-date=June 7, 2011 |page=8 }}

class="wikitable"
Physical layer

!40 Gigabit Ethernet

!100 Gigabit Ethernet

Backplane

|{{n/a}}

|100GBASE-KP4

Improved Backplane

|40GBASE-KR4

|100GBASE-KR4
100GBASE-KR2

7 m over twinax copper cable

|40GBASE-CR4

|100GBASE-CR10
100GBASE-CR4
100GBASE-CR2

30 m over Category 8 twisted pair

|40GBASE-T

|{{n/a}}

100 m over OM3 MMF

| rowspan="2" |40GBASE-SR4

| rowspan="2" |100GBASE-SR10
100GBASE-SR4
100GBASE-SR2

125 m over OM4 MMF
500 m over SMF, serial

|{{n/a}}

|100GBASE-DR

2 km over SMF, serial

|40GBASE-FR

|100GBASE-FR1

10 km over SMF

|40GBASE-LR4

|100GBASE-LR4
100GBASE-LR1

40 km over SMF

|{{vanchor|40GBASE-ER4}}

|{{vanchor|100GBASE-ER4}}

80 km over SMF

|{{n/a}}

|100GBASE-ZR

The 100 m laser-optimized multi-mode fiber (OM3) objective was met by parallel ribbon cable with 850 nm wavelength 10GBASE-SR like optics (40GBASE-SR4 and 100GBASE-SR10). The backplane objective with 4 lanes of 10GBASE-KR type PHYs (40GBASE-KR4). The copper cable objective is met with 4 or 10 differential lanes using SFF-8642 and SFF-8436 connectors. The 10 and 40 km {{nowrap|100 Gbit/s}} objectives with four wavelengths (around 1310 nm) of {{nowrap|25 Gbit/s}} optics (100GBASE-LR4 and 100GBASE-ER4) and the 10 km {{nowrap|40 Gbit/s}} objective with four wavelengths (around 1310 nm) of {{nowrap|10 Gbit/s}} optics (40GBASE-LR4).{{cite web

| url = http://www.ieee802.org/3/ba/public/may08/index.htm

| title = IEEE P802.3ba 40Gbit/s and 100Gbit/s Ethernet Task Force, May 2008 Meeting | date = May 13, 2008

|author= Ilango Ganga |author2= Brad Booth |author3= Howard Frazier |author4= Shimon Muller |author5= Gary Nicholl

}}

In January 2010 another IEEE project authorization started a task force to define a {{nowrap|40 Gbit/s}} serial single-mode optical fiber standard (40GBASE-FR). This was approved as standard 802.3bg in March 2011.{{cite web |title= IEEE P802.3bg 40Gb/s Ethernet: Single-mode Fibre PMD Task Force |work= official task force web site |publisher= IEEE 802 |date= April 12, 2011 |url= http://www.ieee802.org/3/bg/ |access-date=June 7, 2011 }} It used 1550 nm optics, had a reach of 2 km and was capable of receiving 1550 nm and 1310 nm wavelengths of light. The capability to receive 1310 nm light allows it to inter-operate with a longer reach 1310 nm PHY should one ever be developed. 1550 nm was chosen as the wavelength for 802.3bg transmission to make it compatible with existing test equipment and infrastructure.{{cite web

| url = http://www.ieee802.org/3/bg/public/nov10/anderson_01a_1110.pdf

| title = Rationale for dual-band Rx in 40GBASE-FR

| first1 = Jon| last1 = Anderson

}}

In December 2010, a 10x10 multi-source agreement (10x10 MSA) began to define an optical Physical Medium Dependent (PMD) sublayer and establish compatible sources of low-cost, low-power, pluggable optical transceivers based on 10 optical lanes at {{nowrap|10 Gbit/s}} each.{{cite web |url= http://www.10x10msa.org |title= 10 x 10 MSA – Low Cost 100 GB/s Pluggable Optical Transceiver |publisher= 10x10 multi-source agreement |work= official web site |access-date= June 24, 2011 |archive-date= June 21, 2011 |archive-url= https://web.archive.org/web/20110621004102/http://www.10x10msa.org/ |url-status= dead }} The 10x10 MSA was intended as a lower cost alternative to 100GBASE-LR4 for applications which do not require a link length longer than 2 km. It was intended for use with standard single mode G.652.C/D type low water peak cable with ten wavelengths ranging from 1523 to 1595 nm. The founding members were Google, Brocade Communications, JDSU and Santur.{{cite news |title= Leading Industry Peers Join Forces to Develop Low-Cost 100G Multi-Source Agreement |date= December 7, 2010 |work= Businesswire news release |url= http://www.businesswire.com/news/home/20101207005672/en |access-date=June 24, 2011 }}

Other member companies of the 10x10 MSA included MRV, Enablence, Cyoptics, AFOP, oplink, Hitachi Cable America, AMS-IX, EXFO, Huawei, Kotura, Facebook and Effdon when the 2 km specification was announced in March 2011.{{cite news |title= 10X10 MSA Ratifies Specification for Low Cost 100 Gb/s 2 Kilometer Links |date= March 4, 2011 |work= News release |publisher= 10x10 MSA |url= http://www.10x10msa.org/press_releases/10x10MSA_public_specification_released.pdf |access-date= June 24, 2011 |archive-url= https://web.archive.org/web/20110718075117/http://www.10x10msa.org/press_releases/10x10MSA_public_specification_released.pdf |archive-date= 2011-07-18 |url-status= dead }}

The 10X10 MSA modules were intended to be the same size as the CFP specifications.

On June 12, 2014, the 802.3bj standard was approved. The 802.3bj standard specifies {{nowrap|100 Gbit/s}} 4x25G PHYs - 100GBASE-KR4, 100GBASE-KP4 and 100GBASE-CR4 - for backplane and twin-ax cable.

On February 16, 2015, the 802.3bm standard was approved. The 802.3bm standard specifies a lower-cost optical 100GBASE-SR4 PHY for MMF and a four-lane chip-to-module and chip-to-chip electrical specification (CAUI-4). The detailed objectives for the 802.3bm project can be found on the 802.3 website.

On May 14, 2018, the 802.3ck project was approved. This has objectives to:{{cite web|url=http://www.ieee802.org/3/ck/P802_3ck_Objectives_2018mar.pdf |title=Objectives |publisher=www.ieee802.org |date= |accessdate=2021-10-22}}

  • Define a single-lane {{nowrap|100 Gbit/s}} Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on {{nowrap|100 Gbit/s}} per lane optical signaling (100GAUI-1 C2M)
  • Define a single-lane {{nowrap|100 Gbit/s}} Attachment Unit Interface (AUI) for chip-to-chip applications (100GAUI-1 C2C)
  • Define a single-lane {{nowrap|100 Gbit/s}} PHY for operation over electrical backplanes supporting an insertion loss ≤ 28 dB at 26.56 GHz (100GBASE-KR1).
  • Define a single-lane {{nowrap|100 Gbit/s}} PHY for operation over twin-axial copper cables with lengths up to at least 2 m (100GBASE-CR1).

On November 12, 2018, the IEEE P802.3ct Task Force started working to define PHY supporting {{nowrap|100 Gbit/s}} operation on a single wavelength capable of at least 80 km over a DWDM system (100GBASE-ZR) (using a combination of phase and amplitude modulation with coherent detection).

On December 5, 2018, the 802.3cd standard was approved. The 802.3cd standard specifies PHYs using {{nowrap|50 Gbit/s}} lanes - 100GBASE-KR2 for backplane, 100GBASE-CR2 for twin-ax cable, 100GBASE-SR2 for MMF and using {{nowrap|100 Gbit/s}} signalling 100GBASE-DR for SMF.

In June 2020, the IEEE P802.3db Task Force started working to define a physical layer specification that supports {{nowrap|100 Gbit/s}} operation over 1 pair of MMF with lengths up to at least 50 m.

On February 11, 2021, the IEEE 802.3cu standard was approved. The IEEE 802.3cu standard defines single-wavelength {{nowrap|100 Gbit/s}} PHYs for operation over SMF (Single-Mode Fiber) with lengths up to at least 2 km (100GBASE-FR1) and 10 km (100GBASE-LR1).

100G interface types

{{Fibre legend}}

class="wikitable" style="line-height:110%;"
Name

! Standard

! Status

! style="width: 170px;" | Media

! Connector

! Transceiver
Module

! Reach
in m

! #
{{tooltip|Media|Number of physical media (wires/fibres) needed for bidirectional traffic}}
(⇆)

! #
{{tooltip|Lambdas|Number of wavelengths used in each direction}}
(→)

! #
{{tooltip|Lanes|Number of lanes (on the wire/fibre) in each direction}}
(→)

! Notes

colspan="11" {{partial|100 Gigabit Ethernet (100 GbE) (1st Generation: 10GbE-based) - (Data rate: {{nowrap|100 Gbit/s}} - Line code: 64b/66b × NRZ - Line rate: 10x 10.3125 GBd = 103.125 GBd - Full-Duplex)}} {{cite web |url=https://www.nanog.org/sites/default/files/meetings/NANOG64/1004/20150604_Hankins_Evolution_Of_Ethernet_v1.pdf |title=Evolution of Ethernet Speeds: What's New and What's Next |publisher=Alcatel-Lucent |date=2015-06-03 |access-date=2018-08-28}}{{cite web |url=https://www.ieee.li/pdf/viewgraphs/exploring_the_ieee_802_ethernet_ecosystem.pdf |title=Exploring The IEEE 802 Ethernet Ecosystem |publisher=IEEE |date=2017-06-04 |access-date=2018-08-29}}{{cite web |url=http://www.ieee802.org/3/cd/public/May16/kipp_3cd_01a_0516.pdf |title=Multi-Port Implementations of 50/100/200GbE |publisher=Brocade |date=2016-05-22 |access-date=2018-08-29}}
{{nowrap|100GBASE-CR10}}
{{nowrap|Direct Attach}}

| {{nowrap|802.3ba-2010}}
(CL85)

| {{partial|phase-out}}

| {{terminated|twinaxial
balanced}}

| {{terminated|CXP
(SFF-8642)
CFP2
CFP4
QSFP+
}}

| style="text-align:center;" | CXP
CFP2
CFP4
QSFP+

| style="text-align:right;" | 7

| style="text-align:right;" | 20

| style="text-align:right;" | N/A

| style="text-align:right;" | 10

| Data centres (inter-rack);
CXP connector uses center 10 out of 12 channels.

rowspan="2" | {{nowrap|100GBASE-SR10}}

| rowspan="2" | {{nowrap|802.3ba-2010}}
(CL82/86)

| rowspan="2" {{partial|phase-out}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|red|850 nm}}}}

| rowspan="2" {{CGuest|MPO/MTP
(MPO-24)}}

| rowspan="2" style="text-align:center;" | CXP
CFP
CFP2
CFP4
CPAK

| style="background:#7df9ff;" | {{nowrap|OM3: 100}}

| rowspan="2" style="text-align:right;" | 20

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" style="text-align:right;" | 10

| rowspan="2" |

style="background:hotPink;"| {{nowrap|OM4: 150}}
{{nowrap|10×10G}}

| {{partial|proprietary
(MSA, Jan 2010)
}}

| {{partial|phase-out}}

| {{CGuest|Fibre
{{fontcolour|#F49AC2|1523 nm , 1531 nm
1539 nm , 1547 nm
1555 nm , 1563 nm
1571 nm , 1579 nm
1587 nm , 1595 nm}}
}}

| {{CGuest|LC}}

| style="text-align:center;" | CFP

| style="background:yellow;" | {{nowrap|OSx:
2k / 10k / 40k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 10

| style="text-align:right;" | 10

| WDM
Multi-vendor standard{{cite web |url=http://www.oplink.com/pdf/S0303-CFP1C0XL2C000E1G_(web).pdf |title=10x10G 10km CFP Transceiver |publisher=Oplink |date=2012-02-20 |access-date=2018-08-28}}

colspan="11" {{success|100 Gigabit Ethernet (100 GbE) (2nd Generation: 25GbE-based) - (Data rate: {{nowrap|100 Gbit/s}} - Line code: 256b/257b × RS-FEC(528,514) × NRZ - Line rate: 4x 25.78125 GBd = 103.125 GBd - Full-Duplex)}} {{cite web |url=https://www.xilinx.com/publications/prod_mktg/IEEE_Comms_Article.pdf |title=IEEE Communications Magazine December 2013, Vol. 51, No. 12 - Next Generation Backplane and Copper Cable Challenges |publisher=IEEE Communications Society |date=2013-12-01 |access-date=2018-08-28}}
{{nowrap|100GBASE-KR4}}

| {{nowrap|802.3bj-2014}}
(CL93)

| {{active|current}}

| {{terminated|Cu-Backplane}}

| {{N/A}}

| {{N/A}}

| style="text-align:right;" | 1

| style="text-align:right;" | 8

| style="text-align:right;" | N/A

| style="text-align:right;" | 4

| PCBs;
total insertion loss of up to 35 dB at 12.9 GHz

{{nowrap|100GBASE-KP4}}

| {{nowrap|802.3bj-2014}}
(CL94)

| {{active|current}}

| {{terminated|Cu-Backplane}}

| {{N/A}}

| {{N/A}}

| style="text-align:right;" | 1

| style="text-align:right;" | 8

| style="text-align:right;" | N/A

| style="text-align:right;" | 4

| PCBs;
Line code: RS-FEC(544,514) × PAM4
× 92/90 framing and 31320/31280 lane identification

Line rate: 4x 13.59375 GBd = 54.375 GBd
total insertion loss of up to 33 dB at 7 GHz

{{nowrap|100GBASE-CR4}}
{{nowrap|Direct Attach}}

| {{nowrap|802.3bj-2010}}
(CL92)

| {{active|current}}

| {{terminated|twinaxial
balanced}}

| {{terminated|QSFP28
(SFF-8665)
CFP2
CFP4
}}

| {{N/A}}

| style="text-align:right;" | 5

| style="text-align:right;" | 8

| style="text-align:right;" | N/A

| style="text-align:right;" | 4

| Data centres (inter-rack)

rowspan="2" | {{nowrap|100GBASE-SR4}}

| rowspan="2" | {{nowrap|802.3bm-2015}}
(CL95)

| rowspan="2" {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|red|850 nm}}}}

| rowspan="2" {{CGuest|MPO/MTP
(MPO-12)}}

| rowspan="2" style="text-align:center;" | QSFP28
CFP2
CFP4
CPAK

| style="background:#7df9ff;" | {{nowrap|OM3: 70}}

| rowspan="2" style="text-align:right;" | 8

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" style="text-align:right;" | 4

| rowspan="2" |

style="background:hotPink;"| {{nowrap|OM4: 100}}
rowspan="3" | {{nowrap|100GBASE-SR2-BiDi}}
{{nowrap|(BiDirectional)}}

| rowspan="3" {{partial|proprietary
(non IEEE)
}}

| rowspan="3" {{active|current}}

| rowspan="3" {{CGuest|Fibre
{{fontcolour|red|850 nm
900 nm}}
}}

| rowspan="3" {{CGuest|LC}}

| rowspan="3" style="text-align:center;" | QSFP28

| style="background:#7df9ff;"| {{nowrap|OM3: 70}}

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" | WDM
Line rate: 2x (2x 26.5625 GBd with PAM4)
Duplex fiber with both being used to transmit and receive;
The major selling point of this variant is its ability to run over existing LC multi-mode fiber (allowing easy migration from 10G/25G to 100G).
Not to be confused with (and not compatible with) 100GBASE-SR1.2 (see below).

style="background:hotPink;"| {{nowrap|OM4: 100}}
style="background:#6f0;"| {{nowrap|OM5: 150}}
rowspan="3" | {{nowrap|100GBASE-SWDM4}}

| rowspan="3" {{partial|proprietary
(MSA, Nov 2017)
}}

| rowspan="3" {{active|current}}

| rowspan="3" {{CGuest|Fibre
{{fontcolour|red|844 – 858 nm
874 – 888 nm
904 – 918 nm
934 – 948 nm}}
}}

| rowspan="3" {{CGuest|LC}}

| rowspan="3" style="text-align:center;" | QSFP28

| style="background:#7df9ff;" | {{nowrap|OM3: 75}}

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 4

| rowspan="3" style="text-align:right;" | 4

| rowspan="3" | SWDM{{cite web |url=http://www.swdm.org/ |title=SWDM Alliance MSA |website=SWDM Alliance |access-date=2020-07-27}}

style="background:hotPink;"| {{nowrap|OM4: 100}}
style="background:#6f0;"| {{nowrap|OM5: 150}}
{{nowrap|100GBASE-LR4}}

| {{nowrap|802.3ba-2010}}
(CL88)

| {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|#F88379|1295.56 nm
1300.05 nm
1304.59 nm
1309.14 nm}}
}}

| rowspan="2" {{CGuest|LC}}

| style="text-align:center;" | QSFP28
CFP
CFP2
CFP4
CPAK

| style="background:yellow;" | {{nowrap|OSx: 10k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 4

| style="text-align:right;" | 4

| WDM
Line code: 64b/66b × NRZ

{{nowrap|100GBASE-ER4}}

| {{nowrap|802.3ba-2010}}
(CL88)

| {{active|current}}

| style="text-align:center;" | QSFP28
CFP
CFP2

| style="background:yellow;" | {{nowrap|OSx: 40k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 4

| style="text-align:right;" | 4

| WDM
Line code: 64b/66b × NRZ

{{nowrap|100GBASE-PSM4}}

| {{partial|proprietary
(MSA, Jan 2014)
}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1310 nm}}}}

| {{CGuest|MPO/MTP
(MPO-12)}}

| style="text-align:center;" | QSFP28
CFP4

| style="background:yellow;" | {{nowrap|OSx: 500}}

| style="text-align:right;" | 8

| style="text-align:right;" | 1

| style="text-align:right;" | 4

| Data centres;
Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ
Multi-vendor standard {{cite web |url=http://www.psm4.org/100G-PSM4-Specification-2.0.pdf |title=100G PSM4 Specification |publisher=PSM4 MSA Group |date=2014-09-15 |access-date=2018-08-28}}

{{nowrap|100GBASE-CWDM4}}

| {{partial|proprietary
(MSA, Mar 2014)
}}

| {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|#F88379|1271 nm
1291 nm
1311 nm
1331 nm
±6.5 nm each}}
}}

| rowspan="5" {{CGuest|LC}}

| style="text-align:center;" | QSFP28
CFP2
CFP4

| style="background:yellow;" | {{nowrap|OSx: 2k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 4

| style="text-align:right;" | 4

| Data centres;
WDM
Multi-vendor standard{{cite web |url=http://www.fiber-optic-transceiver-module.com/difference-between-100g-clr4-and-cwdm4.html |title=What's the Difference Between 100G CLR4 and CWDM4? |publisher=fiber-optic-transceiver-module.com |date=2017-02-12 |access-date=2018-08-28}}{{cite web |url=http://www.cwdm4-msa.org/wp-content/uploads/2015/12/CWDM4-MSA-Technical-Spec-1p1-1.pdf |title=100G CWDM4 MSA Technical Specifications |publisher=CWDM4 MSA Group |date=2015-11-24 |access-date=2018-08-28}}

{{nowrap|100GBASE-4WDM-10}}

| {{partial|proprietary
(MSA, Oct 2018)
}}

| {{active|current}}

| rowspan="3" style="text-align:center;" | QSFP28
CFP4

| style="background:yellow;" | {{nowrap|OSx: 10k}}

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 4

| rowspan="3" style="text-align:right;" | 4

| WDM
Multi-vendor standard{{cite web |last1=Ghiasi |first1=Ali |title=100G 4WDM-10 MSA Technical Specifications Release 1.0 |url=http://4wdm-msa.org/wp-content/uploads/2018/10/4WDM10_MSA_Spec_R1.0.pdf |website=4wdm-msa.org |publisher=4-Wavelength WDM MSA |access-date=5 April 2021 |ref=4WDM-10-Spec}}

{{nowrap|100GBASE-4WDM-20}}

| {{partial|proprietary
(MSA, Jul 2017)
}}

| {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|#F88379|1295.56 nm
1300.05 nm
1304.58 nm
1309.14 nm
±1.03 nm each}}
}}

| style="background:yellow;" | {{nowrap|OSx: 20k}}

| WDM
Multi-vendor standard{{cite web |last1=Hiramoto |first1=Kiyo |title=100G 4WDM-20 & 4WDM-40 MSA Technical Specifications |url=http://4wdm-msa.org/wp-content/uploads/2018/10/4WDM20_40_MSA_R1.0_Jul28_2017.pdf |website=4wdm-msa.org |publisher=4-Wavelength WDM MSA |access-date=5 April 2021 |ref=4WDM-20-40-Spec}}

{{nowrap|100GBASE-4WDM-40}}

| {{partial|proprietary
(non IEEE)
(MSA, Jul 2017)
}}

| {{active|current}}

| style="background:yellow;" | {{nowrap|OSx: 40k}}

| WDM
Multi-vendor standard

{{nowrap|100GBASE-CLR4}}

| {{partial|proprietary
(MSA, Apr 2014)
}}

| {{active|current}}

| rowspan="1" {{CGuest|Fibre
{{fontcolour|#F88379|1271 nm
1291 nm
1311 nm
1331 nm
±6.5 nm each}}
}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 2k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 4

| style="text-align:right;" | 4

| Data centres;
WDM
Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ
Interoperable with 100GBASE-CWDM4 when using RS-FEC;
Multi-vendor standard{{cite web |url=http://www.accelink.com/d/file/content/2017/06/595629dfcc3f8.pdf |title=100G CLR4 QSFP28 Optical Transceivers |publisher=Accelink |date=2017-06-30 |access-date=2018-08-28}}

{{nowrap|100GBASE-CWDM4}}

| {{partial|proprietary
(OCP MSA, Mar 2014)
}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F49AC2|1504 – 1566 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 2k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 4

| style="text-align:right;" | 4

| Data centres;
WDM
Line code: 64b/66b × NRZ or 256b/257b × RS-FEC(528,514) × NRZ
Derived from 100GBASE-CWDM4 to allow cheaper transceivers;
Multi-vendor standard{{cite web archived |url=http://www.openopticsmsa.org/pdf/Open_Optics_Design_Guide.pdf |title=Open Optics MSA Design Guide |publisher=Open Compute Project - Mellanox Technologies |date=2015-03-08 |access-date=2018-08-28 |archive-date=2015-03-22}}

colspan="11" {{success|100 Gigabit Ethernet (100 GbE) (3rd Generation: 50GbE-based) - (Data rate: {{nowrap|100 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 26.5625 GBd x2 = 106.25 GBd - Full-Duplex)}}
{{nowrap|100GBASE-KR2}}

| {{nowrap|802.3cd-2018}}
(CL137)

| {{active|current}}

| {{terminated|Cu-Backplane}}

| {{N/A}}

| {{N/A}}

| style="text-align:right;" | 1

| style="text-align:right;" | 4

| style="text-align:right;" | N/A

| style="text-align:right;" | 2

| PCBs

{{nowrap|100GBASE-CR2}}

| {{nowrap|802.3cd-2018}}
(CL136)

| {{active|current}}

| {{terminated|twinaxial
balanced}}

| {{terminated|QSFP28,
microQSFP,
QSFP-DD,
OSFP

(SFF-8665)
}}

| {{N/A}}

| style="text-align:right;" | 3

| style="text-align:right;" | 4

| style="text-align:right;" | N/A

| style="text-align:right;" | 2

| Data centres (in-rack)

rowspan="2" | {{nowrap|100GBASE-SR2}}

| rowspan="2" | {{nowrap|802.3cd-2018}}
(CL138)

| rowspan="2" {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|red|850 nm}}}}

| rowspan="2" {{CGuest|MPO
4 fibres}}

| rowspan="2" style="text-align:center;" | QSFP28

| style="background:#7df9ff;" | {{nowrap|OM3: 70}}

| rowspan="2" style="text-align:right;" | 4

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" style="text-align:right;" | 2

| rowspan="2" |

style="background:hotPink;"| {{nowrap|OM4: 100}}
rowspan="3" | {{nowrap|100GBASE-SR1.2}}
{{nowrap|(Bidirectional)}}

| rowspan="3" | {{nowrap|802.3bm-2015}}

| rowspan="3" {{active|current}}

| rowspan="3" {{CGuest|Fibre
{{fontcolour|red|850 nm
900 nm}}
}}

| rowspan="3" {{CGuest|LC}}

| rowspan="3" style="text-align:center;" | QSFP28

| style="background:#7df9ff;" | {{nowrap|OM3: 70}}

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" | WDM
Line rate: 2x (2x 26.5625 GBd with PAM4){{cite web |url=https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/datasheet-c78-736282.html |title=Cisco 100GBASE QSFP-100G Modules Data Sheet |publisher=Cisco |access-date=2022-09-16}}
Duplex fiber with both being used to transmit and receive;
The major selling point of this variant is its ability to run over existing LC multi-mode fiber (allowing easy migration from 10G/25G to 100G). This BiDi variant is compatible with breakout from 400GBASE-4.2 but is not compatible with 100G-SR2-BiDi (see above).{{cite web |url=https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/100gbps-bidi-plug-transceiver-aag.html |title=Cisco 100Gbps QSFP100 SR1.2 BiDi Pluggable Transceiver At-a-Glance |publisher=Cisco |access-date=2022-09-16}}

style="background:hotPink;"| {{nowrap|OM4: 100}}
style="background:#6f0;"| {{nowrap|OM5: 100}}
colspan="11" {{success|100 Gigabit Ethernet (100 GbE) (4th Generation: 100GbE-based) - (Data rate: {{nowrap|100 Gbit/s}} - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 1x 53.1250 GBd x2 = 106.25 GBd - Full-Duplex)}}
{{nowrap|100GBASE-KR1}}

| {{nowrap|802.3ck-2022
(CL163)}}

| {{active|current}}

| {{terminated|Cu-Backplane}}

| {{N/A}}

| {{N/A}}

|

| style="text-align:right;" | 2

| style="text-align:right;" | N/A

| style="text-align:right;" | 1

| total insertion loss ≤ 28 dB at 26.56 GHz.

{{nowrap|100GBASE-CR1}}

| {{nowrap|802.3ck-2022
(CL162)}}

| {{active|current}}

| {{terminated|twinaxial
balanced}}

| {{terminated|SFP112,
SFP-DD112,
DSFP,
QSFP112,
QSFP-DD800,
OSFP
}}

| {{N/A}}

| style="text-align:right;" | 2

| style="text-align:right;" | 2

| style="text-align:right;" | N/A

| style="text-align:right;" | 1

|

rowspan="2" | {{nowrap|100GBASE-VR1}}

| rowspan="2" | {{nowrap|802.3db-2022}}
(CL167)

| rowspan="2" {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|red|842 – 948 nm}}}}

| rowspan="2" {{CGuest|LC}}

| rowspan="2" style="text-align:center;" | QSFP28

| style="background:#7df9ff;" | {{nowrap|OM3: 30}}

| rowspan="2" style="text-align:right;" | 2

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" |

style="background:hotPink;"| {{nowrap|OM4: 50}}
rowspan="2" | {{nowrap|100GBASE-SR1}}

| rowspan="2" | {{nowrap|802.3db-2022}}
(CL167)

| rowspan="2" {{active|current}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|red|844 – 863 nm}}}}

| rowspan="2" {{CGuest|LC}}

| rowspan="2" style="text-align:center;" | QSFP28

| style="background:#7df9ff;" | {{nowrap|OM3: 60}}

| rowspan="2" style="text-align:right;" | 2

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" style="text-align:right;" | 1

| rowspan="2" |

style="background:hotPink;"| {{nowrap|OM4: 100}}
{{nowrap|100GBASE-DR}}

| {{nowrap|802.3cd-2018}}
(CL140)

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1311 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 500}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

|

{{nowrap|100GBASE-FR1}}

| {{nowrap|802.3cu-2021
(CL140)}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1311 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 2k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Multi-vendor standard{{cite web |url=http://100glambda.com/specifications/summary/2-specifications/9-100g-fr-and-100g-lr-technical-specs-rev2-0 |title=100G-FR and 100G-LR Technical Specifications |publisher=100G Lambda MSA Group |access-date=2021-05-26}}

{{nowrap|100GBASE-LR1}}

| {{nowrap|802.3cu-2021
(CL140)}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1311 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 10k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Multi-vendor standard

{{nowrap|100GBASE-LR1-20}}

| {{partial|proprietary
(MSA, Nov 2020)
}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1311 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 20k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Multi-vendor standard{{cite web |last1=Nowell |first1=Mark |title=100G-LR1-20, 100G-ER1-30, 100G-ER1-40 Technical Specifications |url=http://100glambda.com/specifications/summary/2-specifications/11-100g-lr1-20-er1-technical-specs-rev-1p0 |website=100glambda.com |publisher=100G Lambda MSA |access-date=26 May 2021}}

{{nowrap|100GBASE-ER1-30}}

| {{partial|proprietary
(MSA, Nov 2020)
}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1311 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 30k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Multi-vendor standard

{{nowrap|100GBASE-ER1-40}}

| {{partial|proprietary
(MSA, Nov 2020)
}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1311 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | QSFP28

| style="background:yellow;" | {{nowrap|OSx: 40k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Multi-vendor standard

{{nowrap|100GBASE-ZR}}

| {{nowrap|802.3ct-2021
(CL153/154)}}

| {{active|current}}

| {{CGuest|Fibre
{{fontcolour|#F49AC2|1546.119 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | CFP

| style="background:yellow;" | {{nowrap|OS2: 80k+}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Line code: DP-DQPSK × SC-FEC
Line rate: 27.9525 GBd
Reduced bandwidth and line rate for ultra long distances.{{cite web |url=http://www.rfwireless-world.com/Terminology/QPSK-vs-DP-QPSK.html |title=QPSK vs DP-QPSK - difference between QPSK and DP-QPSK modulation |publisher=RF Wireless World |date=2018-07-15 |access-date=2018-08-29}}

{{notelist}}

= Coding schemes =

; 10.3125 Gbaud with NRZ ("PAM2") and 64b66b on 10 lanes per direction

: One of the earliest coding used, this widens the coding scheme used in single lane 10GE and quad lane 40G to use 10 lanes. Due to the low symbol rate, relatively long ranges can be achieved at the cost of using a lot of cabling.

: This also allows breakout to 10×10GE, provided that the hardware supports splitting the port.

; 25.78125 Gbaud with NRZ ("PAM2") and 64b66b on 4 lanes per direction

: A sped-up variant of the above, this directly corresponds to 10GE/40GE signalling at 2.5× speed. The higher symbol rate makes links more susceptible to errors.

: If the device and transceiver support dual-speed operation, it is possible to reconfigure an 100G port to downspeed to 40G or 4×10G. There is no autonegotiation protocol for this, thus manual configuration is necessary. Similarly, a port can be broken into 4×25G if implemented in the hardware. This is applicable even for CWDM4, if a CWDM demultiplexer and CWDM 25G optics are used appropriately.

; 25.78125 Gbaud with NRZ ("PAM2") and RS-FEC(528,514) on 4 lanes per direction

: To address the higher susceptibility to errors at these symbol rates, an application of Reed–Solomon error correction was defined in IEEE 802.3bj / Clause 91. This replaces the 64b66b encoding with a 256b257b encoding followed by the RS-FEC application, which combines to the exact same overhead as 64b66b. To the optical transceiver or cable, there is no distinction between this and 64b66b; some interface types (e.g. CWDM4) are defined "with or without FEC."

; 26.5625 Gbaud with PAM4 and RS-FEC(544,514) on 2 lanes per direction

: This achieves a further doubling in bandwidth per lane (used to halve the number of lanes) by employing pulse-amplitude modulation with 4 distinct analog levels, making each symbol carry 2 bits. To keep up error margins, the FEC overhead is doubled from 2.7% to 5.8%, which explains the slight rise in symbol rate.

; 53.125 Gbaud with PAM4 and RS-FEC(544,514) on 1 lane per direction

: Further pushing silicon limits, this is a double rate variant of the previous, giving full 100GE operation over 1 medium lane.

; 30.14475 Gbaud with DP-DQPSK and SD-FEC on 1 lane per direction

: Mirroring OTN4 developments, DP-DQPSK (dual polarization differential quadrature phase shift keying) employs polarization to carry one axis of the DP-QPSK constellation. Additionally, new soft decision FEC algorithms take additional information on analog signal levels as input to the error correction procedure.

; 13.59375 Gbaud with PAM4, KP4 specific coding and RS-FEC(544,514) on 4 lanes per direction

: A half-speed variant of 26.5625 Gbaud with RS-FEC, with a 31320/31280 step encoding the lane number into the signal, and further 92/90 framing.

{{Anchor|Connectors}}40G interface types

{{Fibre legend}}

class="wikitable" style="line-height:110%;"
Name

! Standard

! Status

! style="width: 170px;" | Media

! Connector

! Transceiver
Module

! Reach
in m

! #
{{tooltip|Media|Number of physical media (wires/fibres) needed for bidirectional traffic}}
(⇆)

! #
{{tooltip|Lambdas|Number of wavelengths used in each direction}}
(→)

! #
{{tooltip|Lanes|Number of lanes (on the wire/fibre) in each direction}}
(→)

! Notes

colspan="11" {{partial|40 Gigabit Ethernet (40 GbE) - (Data rate: {{nowrap|40 Gbit/s}} - Line code: 64b/66b × NRZ - Line rate: 4x 10.3125 GBd = 41.25 GBd - Full-Duplex)}} {{cite web |url=https://www.cisco.com/c/en/us/td/docs/interfaces_modules/transceiver_modules/compatibility/matrix/40GE_Tx_Matrix.html |title=Cisco 40-Gigabit Ethernet Transceiver Modules Compatibility Matrix |publisher=Cisco |date=2018-08-23 |access-date=2018-08-26}}{{cite web |url=http://www.fiber-optic-transceiver-module.com/a-quick-overview-of-40gbe-40gbe-components.html |title=A Quick Overview of 40GbE & 40GbE Components |publisher=Blog of Fiber Transceivers |date=2016-01-13 |access-date=2018-09-21}}
{{nowrap|40GBASE-KR4}}

| {{nowrap|802.3ba-2010
(CL82/84)}}

| {{partial|phase-
out}}

| {{terminated|Cu-Backplane}}

| {{N/A}}

| {{N/A}}

| style="text-align:right;" | 1

| style="text-align:right;" | 8

| style="text-align:right;" | N/A

| style="text-align:right;" | 4

| PCBs;
possible breakout / lane separation to 4x 10G
through splitter cable (QSFP+ to 4x SFP+);
involves CL73 for auto-negotiation, and CL72 for link training.

{{nowrap|40GBASE-CR4}}
{{nowrap|Direct Attach}}

| {{nowrap|802.3ba-2010
(CL82/85)}}

| {{partial|phase-
out}}

| {{terminated|twinaxial
balanced}}

| {{terminated|QSFP+
(SFF-8635)}}

| style="text-align:center;" | QSFP+

| style="text-align:right;" | 10

| style="text-align:right;" | 8

| style="text-align:right;" | N/A

| style="text-align:right;" | 4

| Data centres (inter-rack)
possible breakout / lane separation to 4x 10G
through splitter cable (QSFP+ to 4x SFP+);
involves CL73 for auto-negotiation and CL72 for link training.

rowspan="2" | {{nowrap|40GBASE-SR4}}

| rowspan="2" | {{nowrap|802.3ba-2010
(CL82/86)}}

| rowspan="2" {{partial|phase-
out}}

| rowspan="4" {{CGuest|Fibre
{{fontcolour|red|850 nm}}}}

| rowspan="4" {{CGuest|MPO/MTP
(MPO-12)}}

| rowspan="2" style="text-align:center;" | CFP
QSFP+

| style="background:#7df9ff;" | {{nowrap|OM3: 100}}

| rowspan="4" style="text-align:right;" | 8

| rowspan="4" style="text-align:right;" | 1

| rowspan="4" style="text-align:right;" | 4

| rowspan="2" | possible breakout / lane separation to 4x 10G
through splitter cable (MPO/MTP to 4x LC-pairs).

style="background:hotPink;"| {{nowrap|OM4: 150}}
rowspan="2" | {{nowrap|40GBASE-eSR4}}

| rowspan="2" {{partial|proprietary
(non IEEE)
}}

| rowspan="2" {{partial|phase-
out}}

| rowspan="2" style="text-align:center;" | QSFP+

| style="background:#7df9ff;" | {{nowrap|OM3: 300}}

| rowspan="2" | possible breakout / lane separation to 4x 10G
through splitter cable (MPO/MTP to 4x LC-pairs).

style="background:hotPink;" | {{nowrap|OM4: 400}}
rowspan="2" | {{nowrap|40GBASE-SR2-BiDi}}
{{nowrap|(BiDirectional)}}

| rowspan="2" {{partial|proprietary
(non IEEE)
}}

| rowspan="2" {{partial|phase-
out}}

| rowspan="2" {{CGuest|Fibre
{{fontcolour|red|850 nm
900 nm}}
}}

| rowspan="2" {{CGuest|LC}}

| rowspan="2" style="text-align:center;" | QSFP+

| style="background:#7df9ff;"| {{nowrap|OM3: 100}}

| rowspan="2" style="text-align:right;" | 2

| rowspan="2" style="text-align:right;" | 2

| rowspan="2" style="text-align:right;" | 2

| rowspan="2" | WDM
duplex fiber each used to transmit and receive on two wavelengths;
The major selling point of this variant is its ability to run over existing 10G multi-mode fiber (i.e. allowing easy migration from 10G to 40G).

style="background:hotPink;"| {{nowrap|OM4: 150}}
rowspan="3" | {{nowrap|40GBASE-SWDM4}}

| rowspan="3" {{partial|proprietary
(MSA, Nov 2017)
}}

| rowspan="3" {{partial|phase-
out}}

| rowspan="3" {{CGuest|Fibre
{{fontcolour|red|844-858 nm
874-888 nm
904-918 nm
934-948 nm}}
}}

| rowspan="3" {{CGuest|LC}}

| rowspan="3" style="text-align:center;" | QSFP+

| style="background:#7df9ff;" | {{nowrap|OM3: 240}}

| rowspan="3" style="text-align:right;" | 2

| rowspan="3" style="text-align:right;" | 4

| rowspan="3" style="text-align:right;" | 4

| rowspan="3" | SWDM

style="background:hotPink;"| {{nowrap|OM4: 350}}
style="background:#6f0;"| {{nowrap|OM5: 440}}
{{nowrap|40GBASE-LR4}}

| {{nowrap|802.3ba-2010
(CL82/87)}}

| {{partial|phase-
out}}

| rowspan="5" {{CGuest|Fibre
{{fontcolour|#F88379|1271 nm
1291 nm
1311 nm
1331 nm
±6.5 nm each}}
}}

| rowspan="5" {{CGuest|LC}}

| style="text-align:center;" | CFP
QSFP+

| style="background:yellow;" | {{nowrap|OSx: 10k}}

| rowspan="5" style="text-align:right;" | 2

| rowspan="5" style="text-align:right;" | 4

| rowspan="5" style="text-align:right;" | 4

| WDM

{{nowrap|40GBASE-ER4}}

| {{nowrap|802.3bm-2015
(CL82/87)}}

| {{partial|phase-
out}}

| style="text-align:center;" | QSFP+

| style="background:yellow;" | {{nowrap|OSx: 40k}}

| WDM

rowspan="3" | {{nowrap|40GBASE-LX4}} / -LM4

| rowspan="3" {{partial|proprietary
(non IEEE)
}}

| rowspan="3" {{partial|phase-
out}}

| rowspan="3" style="text-align:center;" | QSFP+

| style="background:#7df9ff;" | {{nowrap|OM3: 140}}

| rowspan="3" | WDM
as primarily designed for single mode (-LR4), this mode of operation is out of specification for some transceivers.

style="background:hotPink;"| {{nowrap|OM4: 160}}
style="background:yellow;"| {{nowrap|OSx: 10k}}
{{nowrap|40GBASE-PLR4}}
{{nowrap|(parallel -LR4)}}

| {{partial|proprietary
(non IEEE)
}}

| {{partial|phase-
out}}

| {{CGuest|Fibre
{{fontcolour|#F88379|1310 nm}}}}

| {{CGuest|MPO/MTP
(MPO-12)}}

| style="text-align:center;" | QSFP+

| style="background:yellow;" | {{nowrap|OSx: 10k}}

| style="text-align:right;" | 8

| style="text-align:right;" | 1

| style="text-align:right;" | 4

| possible breakout / lane separation to 4x 10G
through splitter cable (MPO/MTP to 4x LC-pairs).

{{nowrap|40GBASE-FR}}

| {{nowrap|802.3bg-2011
(CL82/89)}}

| {{partial|phase-
out}}

| {{CGuest|Fibre
{{fontcolour|#F49AC2|1550 nm}}}}

| {{CGuest|LC}}

| style="text-align:center;" | CFP

| style="background:yellow;" | {{nowrap|OSx: 2k}}

| style="text-align:right;" | 2

| style="text-align:right;" | 1

| style="text-align:right;" | 1

| Line rate: 41.25 GBd
capability to receive 1310 nm light besides 1550 nm;
allows inter-operation with a longer reach 1310 nm PHY (TBD);
use of 1550 nm implies compatibility with existing test equipment and infrastructure.

; {{Visible anchor|Additional note for 40GBASE-CR4/-KR4:}}

CL73 allows communication between the 2 PHYs to exchange technical capability pages, and both PHYs come to a common speed and media type. Completion of CL73 initiates CL72. CL72 allows each of the 4 lanes' transmitters to adjust pre-emphasis via feedback from the link partner.

; {{Visible anchor|40GBASE-T}}

: 40GBASE-T is a port type for 4-pair balanced twisted-pair Cat.8 copper cabling up to 30 m defined in IEEE 802.3bq.{{cite web|title=IEEE P802.3bq 40GBASE-T Task Force|url=http://www.ieee802.org/3/bq/|publisher=IEEE 802.3}} IEEE 802.3bq-2016 standard was approved by The IEEE-SA Standards Board on June 30, 2016.{{cite web|url=http://www.ieee802.org/3/NGBASET/email/msg00972.html | publisher = IEEE | title = Approval of IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, IEEE Std 802.3bp-2016 and IEEE Std 802.3br-2016 |date=2016-06-30}} It uses 16-level PAM signaling over four lanes at 3,200 MBd each, scaled up from 10GBASE-T.

class="wikitable" style="line-height:110%;"

|+Comparison of twisted-pair-based Ethernet physical transport layers (TP-PHYs){{cite book |title=Ethernet: The Definitive Guide |edition=2nd |author=Charles E. Spurgeon |publisher=O'Reilly Media |year=2014 |isbn=978-1-4493-6184-6}}

! Name

! Standard

! Status

! Speed (Mbit/s)

! Pairs required

! Lanes per direction

! Bits per hertz

! Line code

! Symbol rate per lane (MBd)

! Bandwidth

! Max distance (m)

! Cable

! Cable rating (MHz)

! Usage

{{nowrap|40GBASE-T}}

| {{nowrap|802.3bq-2016}} (CL113)

| {{active|current}}

| align="right" | 40000

| align="right" | 4

| align="right" | 4

| align="right" | 6.25

| align="right" | PAM-16 RS-FEC (192, 186) LDPC

| align="right" | 3200

| align="right" | 1600

| align="right" | 30

| align="center" | Cat 8

| align="right" | 2000

| align="center" | LAN, Data centres

Chip-to-chip/chip-to-module interfaces

; {{Visible anchor|CAUI-10}}

: CAUI-10 is a {{nowrap|100 Gbit/s}} 10-lane electrical interface defined in 802.3ba.

; {{Visible anchor|CAUI-4}}

: CAUI-4 is a {{nowrap|100 Gbit/s}} 4-lane electrical interface defined in 802.3bm Annex 83E with a nominal signaling rate for each lane of 25.78125 GBd using NRZ modulation.

; {{Visible anchor|100GAUI-4}}

: 100GAUI-4 is a {{nowrap|100 Gbit/s}} 4-lane electrical interface defined in 802.3cd Annex 135D/E with a nominal signaling rate for each lane of 26.5625 GBd using NRZ modulation and RS-FEC(544,514) so suitable for use with 100GBASE-CR2, 100GBASE-KR2, 100GBASE-SR2, 100GBASE-DR, 100GBASE-FR1, 100GBASE-LR1 PHYs.

; {{Visible anchor|100GAUI-2}}

: 100GAUI-2 is a {{nowrap|100 Gbit/s}} 2-lane electrical interface defined in 802.3cd Annex 135F/G with a nominal signaling rate for each lane of 26.5625 GBd using PAM4 modulation and RS-FEC(544,514) so suitable for use with 100GBASE-CR2, 100GBASE-KR2, 100GBASE-SR2, 100GBASE-DR, 100GBASE-FR1, 100GBASE-LR1 PHYs.

; {{Visible anchor|100GAUI-1}}

: 100GAUI-1 is a {{nowrap|100 Gbit/s}} 1-lane electrical interface defined in 802.3ck Annex 120F/G with a nominal signaling rate for each lane of 53.125 GBd using PAM4 modulation and RS-FEC(544,514) so suitable for use with 100GBASE-CR1, 100GBASE-KR1, 100GBASE-SR1, 100GBASE-DR, 100GBASE-FR1, 100GBASE-LR1 PHYs.

Pluggable optics standards

; {{Visible anchor|40G Transceiver Form Factors}}

: The QSFP+ form factor is specified for use with the 40 Gigabit Ethernet. Copper direct attached cable (DAC) or optical modules are supported, see Figure 85–20 in the 802.3 spec. QSFP+ modules at {{nowrap|40 Gbit/s}} can also be used to provide four independent ports of 10 gigabit Ethernet.

; {{Visible anchor|100G Transceiver Form Factors}}

: CFP modules use the 10-lane CAUI-10 electrical interface.

: CFP2 modules use the 10-lane CAUI-10 electrical interface or the 4-lane CAUI-4 electrical interface.

: CFP4 modules use the 4-lane CAUI-4 electrical interface.{{cite web | title = CFP MSA | url = http://www.cfp-msa.org/ }}

: QSFP28 modules use the CAUI-4 electrical interface.

: SFP-DD or Small Form-factor Pluggable – Double Density modules use the 100GAUI-2 electrical interface.

: Cisco's CPAK optical module uses the four lane CEI-28G-VSR electrical interface.{{cite web | title = Cisco CPAK 100GBASE Modules Data Sheet | url = http://www.cisco.com/en/US/prod/collateral/routers/ps5763/data_sheet_c78-728110.html}}{{cite web | title = Multi-Vendor Interoperability Testing of CFP2, CPAK and QSFP28 with CEI-28G-VSR and CEI-25G-LR Interface During ECOC 2013 Exhibition | url = http://www.oiforum.com/public/documents/OIF-ECOC2013-WhitePaper.pdf | archive-url = http://arquivo.pt/wayback/20160523052913/http://www.oiforum.com/public/documents/OIF-ECOC2013-WhitePaper.pdf | url-status = dead | archive-date = 2016-05-23 | access-date = 2019-02-04 }}

: There are also CXP and HD module standards.{{cite web |title=4X25G Optical Modules and Future Optics |url=http://www.ethernetalliance.org/wp-content/uploads/2012/09/Ethernetnet-Alliance-ECOC-2012-Panel-1.pdf |author=Daniel Dove |access-date=2013-07-04 |archive-url=https://web.archive.org/web/20140211063909/http://www.ethernetalliance.org/wp-content/uploads/2012/09/Ethernetnet-Alliance-ECOC-2012-Panel-1.pdf |archive-date=2014-02-11 |url-status=live }} CXP modules use the CAUI-10 electrical interface.

Optical connectors

Short reach interfaces use Multiple-Fiber Push-On/Pull-off (MPO) optical connectors.{{rp|86.10.3.3}} 40GBASE-SR4 and 100GBASE-SR4 use MPO-12 while 100GBASE-SR10 uses MPO-24 with one optical lane per fiber strand.

Long reach interfaces use duplex LC connectors with all optical lanes multiplexed with WDM.

See also

References

{{reflist}}

Further reading

{{refbegin}}

  • [http://www.ethernetalliance.org/files/static_page_files/D13DCE87-1D09-3519-AD13E838D3CB0181/126_OVERVIEW_AND_APPLICATIONS2.pdf Overview of Requirements and Applications for 40 Gigabit Ethernet and 100 Gigabit Ethernet Technology Overview White Paper] ([https://web.archive.org/web/20100524233104/http://www.ethernetalliance.org/files/static_page_files/D13DCE87-1D09-3519-AD13E838D3CB0181/126_OVERVIEW_AND_APPLICATIONS2.pdf Archived] 2009-08-01) – Ethernet Alliance
  • [http://www.ethernetalliance.org/wp-content/uploads/2011/10/document_files_40G_100G_Tech_overview.pdf 40 Gigabit Ethernet and 100 Gigabit Ethernet Technology Overview White Paper] – Ethernet Alliance

{{refend}}