120-cell honeycomb

{{Short description|5-dimensional regular honeycomb}}

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|120-cell honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{5,3,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|5|node|3|node|3|node|3|node}}
bgcolor=#e7dcc3|4-faces50px {5,3,3}
bgcolor=#e7dcc3|Cells30px {5,3}
bgcolor=#e7dcc3|Faces30px {5}
bgcolor=#e7dcc3|Face figure30px {3}
bgcolor=#e7dcc3|Edge figure30px {3,3}
bgcolor=#e7dcc3|Vertex figure50px {3,3,3}
bgcolor=#e7dcc3|DualOrder-5 5-cell honeycomb
bgcolor=#e7dcc3|Coxeter group{{overline|H}}4, [5,3,3,3]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 4-space, the 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,3}, it has three 120-cells around each face. Its dual is the order-5 5-cell honeycomb, {3,3,3,5}.

Related honeycombs

It is related to the order-4 120-cell honeycomb, {5,3,3,4}, and order-5 120-cell honeycomb, {5,3,3,5}.

It is topologically similar to the finite 5-cube, {4,3,3,3}, and 5-simplex, {3,3,3,3}.

It is analogous to the 120-cell, {5,3,3}, and dodecahedron, {5,3}.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{ISBN|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)

Category:Honeycombs (geometry)

{{geometry-stub}}