5-simplex
{{Short description|Regular 5-polytope}}
{{Uniform polyteron db|Uniform polyteron stat table|hix}}
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1({{sfrac|1|5}}), or approximately 78.46°.
The 5-simplex is a solution to the problem: Make 20 equilateral triangles using 15 matchsticks, where each side of every triangle is exactly one matchstick.
Alternate names
It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions. The name hexateron is derived from hexa- for having six facets and teron (with ter- being a corruption of tetra-) for having four-dimensional facets.
By Jonathan Bowers, a hexateron is given the acronym hix.{{KlitzingPolytopes|polytera.htm|5D uniform polytopes (polytera)|x3o3o3o3o — hix}}
As a configuration
This configuration matrix represents the 5-simplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.{{harvnb|Coxeter|1973|loc=§1.8 Configurations}}{{cite book |first=H.S.M. |last=Coxeter |title=Regular Complex Polytopes |url=https://books.google.com/books?id=9BY9AAAAIAAJ&pg=PA117 |pages=117 |edition=2nd |publisher=Cambridge University Press |year=1991 |isbn=9780521394901}}
Regular hexateron cartesian coordinates
The hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell.
The Cartesian coordinates for the vertices of an origin-centered regular hexateron having edge length 2 are:
:
&\left(\tfrac{1}\sqrt{15},\ \tfrac{1}\sqrt{10},\ \tfrac{1}\sqrt{6},\ \tfrac{1}\sqrt{3},\ \pm1\right)\\[5pt]
&\left(\tfrac{1}\sqrt{15},\ \tfrac{1}\sqrt{10},\ \tfrac{1}\sqrt{6},\ -\tfrac{2}\sqrt{3},\ 0\right)\\[5pt]
&\left(\tfrac{1}\sqrt{15},\ \tfrac{1}\sqrt{10},\ -\tfrac\sqrt{3}\sqrt{2},\ 0,\ 0\right)\\[5pt]
&\left(\tfrac{1}\sqrt{15},\ -\tfrac{2\sqrt 2}\sqrt{5},\ 0,\ 0,\ 0\right)\\[5pt]
&\left(-\tfrac\sqrt{5}\sqrt{3},\ 0,\ 0,\ 0,\ 0\right)
\end{align}
The vertices of the 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of (0,0,0,0,0,1) or (0,1,1,1,1,1). These constructions can be seen as facets of the 6-orthoplex or rectified 6-cube respectively.
Projected images
{{5-simplex Coxeter plane graphs|t0|100}}
class=wikitable width=320
|320px |
Lower symmetry forms
A lower symmetry form is a 5-cell pyramid {3,3,3}∨( ), with [3,3,3] symmetry order 120, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells. These are seen as vertex figures of truncated regular 6-polytopes, like a truncated 6-cube.
Another form is {3,3}∨{ }, with [3,3,2,1] symmetry order 48, the joining of an orthogonal digon and a tetrahedron, orthogonally offset, with all pairs of vertices connected between. Another form is {3}∨{3}, with [3,2,3,1] symmetry order 36, and extended symmetry
The form { }∨{ }∨{ } has symmetry [2,2,1,1], order 8, extended by permuting 3 segments as [3[2,2],1] or [4,3,1,1], order 48.
These are seen in the vertex figures of bitruncated and tritruncated regular 6-polytopes, like a bitruncated 6-cube and a tritruncated 6-simplex. The edge labels here represent the types of face along that direction, and thus represent different edge lengths.
The vertex figure of the omnitruncated 5-simplex honeycomb, {{CDD|node_1|split1|nodes_11|3ab|nodes_11|split2|node_1}}, is a 5-simplex with a petrie polygon cycle of 5 long edges. Its symmetry is isomorphic to dihedral group Dih6 or simple rotation group [6,2]+, order 12.
class=wikitable
|+ Vertex figures for uniform 6-polytopes !Join | {3,3,3}∨( ) | {3,3}∨{ } | {3}∨{3} | { }∨{ }∨{ } | |
Symmetry||[3,3,3,1] Order 120||[3,3,2,1] Order 48|| Order 72||[3[2,2],1,1]=[4,3,1,1] Order 48||~[6] or ~[6,2]+ Order 12 | |||||
---|---|---|---|---|---|
Diagram | |||||
align=center
!Polytope |truncated 6-simplex |bitruncated 6-simplex |tritruncated 6-simplex |3-3-3 prism |Omnitruncated 5-simplex honeycomb |
Compound
The compound of two 5-simplexes in dual configurations can be seen in this A6 Coxeter plane projection, with a red and blue 5-simplex vertices and edges. This compound has
Related uniform 5-polytopes
It is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.
{{1 3k polytopes}}
It is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron.
{{3_k1_polytopes}}
The 5-simplex, as 220 polytope is first in dimensional series 22k.
{{2 2k polytopes}}
The regular 5-simplex is one of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
{{Hexateron family}}
See also
Notes
{{reflist}}
References
- {{cite book |author-link=Thorold Gosset |first=T. |last=Gosset |chapter=On the Regular and Semi-Regular Figures in Space of n Dimensions |title=Messenger of Mathematics |publisher=Macmillan |year=1900 |pages=43– |url=https://books.google.com/books?id=BZo_AQAAIAAJ}}
- Coxeter, H.S.M.:
- {{cite book |title-link=Regular Polytopes (book) |author-mask=1 |first=H.S.M. |last=Coxeter |chapter=Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) |title=Regular Polytopes |publisher=Dover |edition=3rd |year=1973 |isbn=0-486-61480-8 |pages=[https://archive.org/details/regularpolytopes00coxe_869/page/n319 296] }}
- {{cite book |editor-first=F. Arthur |editor-last=Sherk |editor2-first=Peter |editor2-last=McMullen |editor3-first=Anthony C. |editor3-last=Thompson |editor4-first=Asia Ivic |editor4-last=Weiss |title=Kaleidoscopes: Selected Writings of H.S.M. Coxeter |publisher=Wiley |year=1995 |isbn=978-0-471-01003-6 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PP1}}
- (Paper 22) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi Regular Polytopes I |journal=Math. Zeit. |volume=46 |pages=380–407 |year=1940 |doi=10.1007/BF01181449 |s2cid=186237114 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA251 }}
- (Paper 23) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes II |journal=Math. Zeit. |volume=188 |pages=559–591 |year=1985 |issue=4 |doi=10.1007/BF01161657 |s2cid=120429557 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA279}}
- (Paper 24) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes III |journal=Math. Zeit. |volume=200 |pages=3–45 |year=1988 |doi=10.1007/BF01161745 |s2cid=186237142 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA313}}
- {{cite book |author-link=John Horton Conway |first1=John H. |last1=Conway |first2=Heidi |last2=Burgiel |first3=Chaim |last3=Goodman-Strauss |chapter=26. Hemicubes: 1n1 |title=The Symmetries of Things |year=2008 |isbn=978-1-56881-220-5 |pages=409 }}
- {{cite document |author-link=Norman Johnson (mathematician) |first=Norman |last=Johnson |title=Uniform Polytopes |date=1991 |type=Manuscript|publisher=Norman Johnson }}
- {{cite thesis |first=N.W. |last=Johnson |title=The Theory of Uniform Polytopes and Honeycombs |date=1966 |type=PhD |publisher=University of Toronto |url=https://search.library.utoronto.ca/details?402790}}
External links
- {{GlossaryForHyperspace | anchor=Simplex | title=Simplex }}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}