1 33 honeycomb

{{DISPLAYTITLE:1 33 honeycomb}}

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2| 133 honeycomb

bgcolor=#ffffff align=center colspan=2|(no image)
bgcolor=#e7dcc3|TypeUniform tessellation
bgcolor=#e7dcc3|Schläfli symbol{3,33,3}
bgcolor=#e7dcc3|Coxeter symbol133
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea}}
or {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}
bgcolor=#e7dcc3|7-face type132 30px
bgcolor=#e7dcc3|6-face types12230px
13130px
bgcolor=#e7dcc3|5-face types12125px
{34}25px
bgcolor=#e7dcc3|4-face type11125px
{33}25px
bgcolor=#e7dcc3|Cell type10125px
bgcolor=#e7dcc3|Face type{3}25px
bgcolor=#e7dcc3|Cell figureSquare
bgcolor=#e7dcc3|Face figureTriangular duoprism
25px
bgcolor=#e7dcc3|Edge figureTetrahedral duoprism
bgcolor=#e7dcc3|Vertex figureTrirectified 7-simplex 25px
bgcolor=#e7dcc3|Coxeter group{\tilde{E}}_7, 3,33,3
bgcolor=#e7dcc3|Propertiesvertex-transitive, facet-transitive

In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

: {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}

Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type.

: {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3a|nodea}}

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the trirectified 7-simplex, 033.

: {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes}}

The edge figure is determined by removing the ringed nodes of the vertex figure and ringing the neighboring node. This makes the tetrahedral duoprism, {3,3}×{3,3}.

: {{CDD|nodes_11|3ab|nodes|3ab|nodes}}

Kissing number

Each vertex of this polytope corresponds to the center of a 6-sphere in a moderately dense sphere packing, in which each sphere is tangent to 70 others; the best known for 7 dimensions (the kissing number) is 126.

Geometric folding

The {\tilde{E}}_7 group is related to the {\tilde{F}}_4 by a geometric folding, so this honeycomb can be projected into the 4-dimensional demitesseractic honeycomb.

class=wikitable

!{\tilde{E}}_7

{\tilde{F}}_4
{{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}

|{{CDD|node_1|3|node|4|node|3|node|3|node}}

{3,33,3}

|{3,3,4,3}

E<sub>7</sub><sup>*</sup> lattice

{\tilde{E}}_7 contains {\tilde{A}}_7 as a subgroup of index 144.N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294 Both {\tilde{E}}_7 and {\tilde{A}}_7 can be seen as affine extension from A_7 from different nodes: File:Affine_A7_E7_relations.png

The E7* lattice (also called E72){{Cite web|url=http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Es7.html|title=The Lattice E7}} has double the symmetry, represented by 3,33,3. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[http://home.digital.net/~pervin/publications/vermont.html The Voronoi Cells of the E6* and E7* Lattices] {{Webarchive|url=https://web.archive.org/web/20160130193811/http://home.digital.net/~pervin/publications/vermont.html |date=2016-01-30 }}, Edward Pervin The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:

: {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}} ∪ {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_01l}} = {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} ∪ {{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} = dual of {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}.

= Related polytopes and honeycombs=

The 133 is fourth in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The final is a noncompact hyperbolic honeycomb, 134.

{{1 3k polytopes}}

== Rectified 1<sub>33</sub> honeycomb==

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Rectified 133 honeycomb

bgcolor=#ffffff align=center colspan=2|(no image)
bgcolor=#e7dcc3|TypeUniform tessellation
bgcolor=#e7dcc3|Schläfli symbol{33,3,1}
bgcolor=#e7dcc3|Coxeter symbol0331
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea|3a|nodea}}
or {{CDD|node|3|node_1|split1|nodes|3ab|nodes|3ab|nodes}}
bgcolor=#e7dcc3|7-face typeTrirectified 7-simplex
Rectified 1_32
bgcolor=#e7dcc3|6-face typesBirectified 6-simplex
Birectified 6-cube
Rectified 1_22
bgcolor=#e7dcc3|5-face typesRectified 5-simplex
Birectified 5-simplex
Birectified 5-orthoplex
bgcolor=#e7dcc3|4-face type5-cell
Rectified 5-cell
24-cell
bgcolor=#e7dcc3|Cell type{3,3}
{3,4}
bgcolor=#e7dcc3|Face type{3}
bgcolor=#e7dcc3|Vertex figure{}×{3,3}×{3,3}
bgcolor=#e7dcc3|Coxeter group{\tilde{E}}_7, 3,33,3
bgcolor=#e7dcc3|Propertiesvertex-transitive, facet-transitive

The rectified 133 or 0331, Coxeter diagram {{CDD|node|3|node_1|split1|nodes|3ab|nodes|3ab|nodes}} has facets {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3b|nodeb}} and {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes}}, and vertex figure {{CDD|node_1|2|nodes_11|3ab|nodes|3ab|nodes}}.

See also

Notes

{{reflist}}

References

  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, {{ISBN|978-0-486-40919-1}} (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • {{KlitzingPolytopes|flat.htm#7D|7D Heptacombs|o3o3o3o3o3o3o *d3x - linoh}}
  • {{KlitzingPolytopes|flat.htm#7D|7D Heptacombs|o3o3o3x3o3o3o *d3o - rolinoh}}

{{Honeycombs}}

Category:8-polytopes