1 33 honeycomb
{{DISPLAYTITLE:1 33 honeycomb}}
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2| 133 honeycomb | |
bgcolor=#ffffff align=center colspan=2|(no image) | |
bgcolor=#e7dcc3|Type | Uniform tessellation |
bgcolor=#e7dcc3|Schläfli symbol | {3,33,3} |
bgcolor=#e7dcc3|Coxeter symbol | 133 |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea}} or {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}} |
bgcolor=#e7dcc3|7-face type | 132 30px |
bgcolor=#e7dcc3|6-face types | 12230px 13130px |
bgcolor=#e7dcc3|5-face types | 12125px {34}25px |
bgcolor=#e7dcc3|4-face type | 11125px {33}25px |
bgcolor=#e7dcc3|Cell type | 10125px |
bgcolor=#e7dcc3|Face type | {3}25px |
bgcolor=#e7dcc3|Cell figure | Square |
bgcolor=#e7dcc3|Face figure | Triangular duoprism 25px |
bgcolor=#e7dcc3|Edge figure | Tetrahedral duoprism |
bgcolor=#e7dcc3|Vertex figure | Trirectified 7-simplex 25px |
bgcolor=#e7dcc3|Coxeter group | , 3,33,3 |
bgcolor=#e7dcc3|Properties | vertex-transitive, facet-transitive |
In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.
Construction
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
: {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}
Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type.
: {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3a|nodea}}
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the trirectified 7-simplex, 033.
: {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes}}
The edge figure is determined by removing the ringed nodes of the vertex figure and ringing the neighboring node. This makes the tetrahedral duoprism, {3,3}×{3,3}.
: {{CDD|nodes_11|3ab|nodes|3ab|nodes}}
Kissing number
Each vertex of this polytope corresponds to the center of a 6-sphere in a moderately dense sphere packing, in which each sphere is tangent to 70 others; the best known for 7 dimensions (the kissing number) is 126.
Geometric folding
The group is related to the by a geometric folding, so this honeycomb can be projected into the 4-dimensional demitesseractic honeycomb.
class=wikitable
! | |
{{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}
|{{CDD|node_1|3|node|4|node|3|node|3|node}} | |
{3,33,3} |
E<sub>7</sub><sup>*</sup> lattice
contains as a subgroup of index 144.N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294 Both and can be seen as affine extension from from different nodes: File:Affine_A7_E7_relations.png
The E7* lattice (also called E72){{Cite web|url=http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Es7.html|title=The Lattice E7}} has double the symmetry, represented by 3,33,3. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[http://home.digital.net/~pervin/publications/vermont.html The Voronoi Cells of the E6* and E7* Lattices] {{Webarchive|url=https://web.archive.org/web/20160130193811/http://home.digital.net/~pervin/publications/vermont.html |date=2016-01-30 }}, Edward Pervin The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:
: {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}} ∪ {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_01l}} = {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} ∪ {{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} = dual of {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}.
= Related polytopes and honeycombs=
The 133 is fourth in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The final is a noncompact hyperbolic honeycomb, 134.
{{1 3k polytopes}}
== Rectified 1<sub>33</sub> honeycomb==
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Rectified 133 honeycomb | |
bgcolor=#ffffff align=center colspan=2|(no image) | |
bgcolor=#e7dcc3|Type | Uniform tessellation |
bgcolor=#e7dcc3|Schläfli symbol | {33,3,1} |
bgcolor=#e7dcc3|Coxeter symbol | 0331 |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea|3a|nodea}} or {{CDD|node|3|node_1|split1|nodes|3ab|nodes|3ab|nodes}} |
bgcolor=#e7dcc3|7-face type | Trirectified 7-simplex Rectified 1_32 |
bgcolor=#e7dcc3|6-face types | Birectified 6-simplex Birectified 6-cube Rectified 1_22 |
bgcolor=#e7dcc3|5-face types | Rectified 5-simplex Birectified 5-simplex Birectified 5-orthoplex |
bgcolor=#e7dcc3|4-face type | 5-cell Rectified 5-cell 24-cell |
bgcolor=#e7dcc3|Cell type | {3,3} {3,4} |
bgcolor=#e7dcc3|Face type | {3} |
bgcolor=#e7dcc3|Vertex figure | {}×{3,3}×{3,3} |
bgcolor=#e7dcc3|Coxeter group | , 3,33,3 |
bgcolor=#e7dcc3|Properties | vertex-transitive, facet-transitive |
The rectified 133 or 0331, Coxeter diagram {{CDD|node|3|node_1|split1|nodes|3ab|nodes|3ab|nodes}} has facets {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3b|nodeb}} and {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes}}, and vertex figure {{CDD|node_1|2|nodes_11|3ab|nodes|3ab|nodes}}.
See also
Notes
{{reflist}}
References
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, {{ISBN|978-0-486-40919-1}} (Chapter 3: Wythoff's Construction for Uniform Polytopes)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- {{KlitzingPolytopes|flat.htm#7D|7D Heptacombs|o3o3o3o3o3o3o *d3x - linoh}}
- {{KlitzingPolytopes|flat.htm#7D|7D Heptacombs|o3o3o3x3o3o3o *d3o - rolinoh}}
{{Honeycombs}}