Omnitruncated 5-simplex honeycomb

{{short description|Five dimensional space-filling tessellation}}

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Omnitruncated 5-simplex honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform honeycomb
bgcolor=#e7dcc3|FamilyOmnitruncated simplectic honeycomb
bgcolor=#e7dcc3|Schläfli symbolt012345{3[6]}
bgcolor=#e7dcc3|Coxeter–Dynkin diagram{{CDD|node_1|split1|nodes_11|3ab|nodes_11|split2|node_1}}
bgcolor=#e7dcc3|5-face typest01234{3,3,3,3} 40px
bgcolor=#e7dcc3|4-face typest0123{3,3,3}25px
{}×t012{3,3}25px
{6}×{6}25px
bgcolor=#e7dcc3|Cell typest012{3,3}25px
{4,3}25px
{}x{6}25px
bgcolor=#e7dcc3|Face types{4}
{6}
bgcolor=#e7dcc3|Vertex figure62px
Irr. 5-simplex
bgcolor=#e7dcc3|Symmetry{\tilde{A}}_5×12, [6[3[6]]]
bgcolor=#e7dcc3|Propertiesvertex-transitive

In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 5-simplex facets.

The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

A<sub>5</sub><sup>*</sup> lattice

The A{{sup sub|*|5}} lattice (also called A{{sup sub|6|5}}) is the union of six A5 lattices, and is the dual vertex arrangement to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-simplex.

:

{{CDD|node_1|split1|nodes|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes_10lur|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes_01lr|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes_10lru|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes_01lr|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes|split2|node_1}} = dual of {{CDD|node_1|split1|nodes_11|3ab|nodes_11|split2|node_1}}

Related polytopes and honeycombs

{{5-simplex honeycomb family}}

= Projection by folding =

The omnitruncated 5-simplex honeycomb can be projected into the 3-dimensional omnitruncated cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same 3-space vertex arrangement:

class=wikitable
{\tilde{A}}_5

|{{CDD|node_1|split1|nodes_11|3ab|nodes_11|split2|node_1}}

{\tilde{C}}_3

|{{CDD|node_1|4|node_1|3|node_1|4|node_1}}

See also

Regular and uniform honeycombs in 5-space:

Notes

{{reflist}}

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]

{{Honeycombs}}

Category:Honeycombs (geometry)

Category:6-polytopes