7-orthoplex
{{Short description|Regular 7- polytope}}
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Regular 7-orthoplex | |
bgcolor=#ffffff align=center colspan=2|280px Orthogonal projection inside Petrie polygon | |
bgcolor=#e7dcc3|Type | Regular 7-polytope |
bgcolor=#e7dcc3|Family | orthoplex |
bgcolor=#e7dcc3|Schläfli symbol | {35,4} {3,3,3,3,31,1} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|4|node}} {{CDD|node_1|3|node|3|node|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|6-faces | 128 {35} 25px |
bgcolor=#e7dcc3|5-faces | 448 {34} 25px |
bgcolor=#e7dcc3|4-faces | 672 {33} 25px |
bgcolor=#e7dcc3|Cells | 560 {3,3} 25px |
bgcolor=#e7dcc3|Faces | 280 {3}25px |
bgcolor=#e7dcc3|Edges | 84 |
bgcolor=#e7dcc3|Vertices | 14 |
bgcolor=#e7dcc3|Vertex figure | 6-orthoplex |
bgcolor=#e7dcc3|Petrie polygon | tetradecagon |
bgcolor=#e7dcc3|Coxeter groups | C7, [3,3,3,3,3,4] D7, [34,1,1] |
bgcolor=#e7dcc3|Dual | 7-cube |
bgcolor=#e7dcc3|Properties | convex, Hanner polytope |
In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cell 4-faces, 448 5-faces, and 128 6-faces.
It has two constructed forms, the first being regular with Schläfli symbol {35,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,31,1} or Coxeter symbol 411.
It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 7-hypercube, or hepteract.
Alternate names
- Heptacross, derived from combining the family name cross polytope with hept for seven (dimensions) in Greek.
- Hecatonicosaoctaexon as a 128-facetted 7-polytope (polyexon). Acronym: zee{{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/zee.htm (x3o3o3o3o3o4o - zee)]}}
As a configuration
This configuration matrix represents the 7-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element.Coxeter, Regular Polytopes, sec 1.8 ConfigurationsCoxeter, Complex Regular Polytopes, p.117
14 & 12 & 60 & 160 & 240 & 192 & 64
\\ 2 & 84 & 10 & 40 & 80 & 80 & 32
\\ 3 & 3 & 280 & 8 & 24 & 32 & 16
\\ 4 & 6 & 4 & 560 & 6 & 12 & 8
\\ 5 & 10 & 10 & 5 & 672 & 4 & 4
\\ 6 & 15 & 20 & 15 & 6 & 448 & 2
\\ 7 & 21 & 35 & 35 & 21 & 7 & 128
\end{matrix}\end{bmatrix}
Images
{{7-cube Coxeter plane graphs|t6|150}}
Construction
There are two Coxeter groups associated with the 7-orthoplex, one regular, dual of the hepteract with the C7 or [4,3,3,3,3,3] symmetry group, and a half symmetry with two copies of 6-simplex facets, alternating, with the D7 or [34,1,1] symmetry group. A lowest symmetry construction is based on a dual of a 7-orthotope, called a 7-fusil.
class=wikitable
!Name !Order | |
align=center
!regular 7-orthoplex |{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|4|node}} |{3,3,3,3,3,4} |[3,3,3,3,3,4] | 645120
|{{CDD|node_1|3|node|3|node|3|node|3|node|4|node}} |
align=center
!Quasiregular 7-orthoplex |{{CDD|node_1|3|node|3|node|3|node|3|node|split1|nodes}} |{3,3,3,3,31,1} |[3,3,3,3,31,1] | 322560
|{{CDD|node_1|3|node|3|node|3|node|split1|nodes}} |
align=center
!7-fusil |{{CDD|node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1}} |7{} |[26] | 128
|{{CDD|node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1|2|node_f1}} |
Cartesian coordinates
Cartesian coordinates for the vertices of a 7-orthoplex, centered at the origin are
: (±1,0,0,0,0,0,0), (0,±1,0,0,0,0,0), (0,0,±1,0,0,0,0), (0,0,0,±1,0,0,0), (0,0,0,0,±1,0,0), (0,0,0,0,0,±1,0), (0,0,0,0,0,0,±1)
Every vertex pair is connected by an edge, except opposites.
See also
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- {{KlitzingPolytopes|polyexa.htm|7D uniform polytopes (polyexa) with acronyms}} x3o3o3o3o3o4o - zee {{sfn whitelist| CITEREFKlitzing}}
External links
- {{GlossaryForHyperspace | anchor=Cross | title=Cross polytope }}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}