7-simplex honeycomb
{{Short description|7-homeycomb}}
class="wikitable" align="right" style="margin-left:10px" width="300"
!bgcolor=#e7dcc3 colspan=2|7-simplex honeycomb | |
bgcolor=#ffffff align=center colspan=2|(No image) | |
bgcolor=#e7dcc3|Type | Uniform 7-honeycomb |
bgcolor=#e7dcc3|Family | Simplectic honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | {3[8]} = 0[8] |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} |
bgcolor=#e7dcc3|6-face types | {36} 30px, t1{36} 30px t2{36} 30px, t3{36} 30px |
bgcolor=#e7dcc3|6-face types | {35} 30px, t1{35} 30px t2{35} 30px |
bgcolor=#e7dcc3|5-face types | {34} 30px, t1{34} 30px t2{34} 30px |
bgcolor=#e7dcc3|4-face types | {33} 30px, t1{33} 30px |
bgcolor=#e7dcc3|Cell types | {3,3} 30px, t1{3,3} 30px |
bgcolor=#e7dcc3|Face types | {3} 30px |
bgcolor=#e7dcc3|Vertex figure | t0,6{36} 30px |
bgcolor=#e7dcc3|Symmetry | ×21, <[3[8]]> |
bgcolor=#e7dcc3|Properties | vertex-transitive |
In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.
A7 lattice
This vertex arrangement is called the A7 lattice or 7-simplex lattice. The 56 vertices of the expanded 7-simplex vertex figure represent the 56 roots of the Coxeter group.{{Cite web|url=http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A7.html|title = The Lattice A7}} It is the 7-dimensional case of a simplectic honeycomb. Around each vertex figure are 254 facets: 8+8 7-simplex, 28+28 rectified 7-simplex, 56+56 birectified 7-simplex, 70 trirectified 7-simplex, with the count distribution from the 9th row of Pascal's triangle.
contains as a subgroup of index 144.N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294 Both and can be seen as affine extensions from from different nodes: File:Affine_A7_E7_relations.png
The A{{sup sub|2|7}} lattice can be constructed as the union of two A7 lattices, and is identical to the E7 lattice.
:
{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}}.
The A{{sup sub|4|7}} lattice is the union of four A7 lattices, which is identical to the E7* lattice (or E{{sup sub|2|7}}).
:
{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}} + {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_01l}} = dual of {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}.
The A{{sup sub|*|7}} lattice (also called A{{sup sub|8|7}}) is the union of eight A7 lattices, and has the vertex arrangement to the dual honeycomb of the omnitruncated 7-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 7-simplex.
:
{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪
{{CDD|node|split1|nodes_10lur|3ab|nodes|3ab|nodes|split2|node}} ∪
{{CDD|node|split1|nodes_01lr|3ab|nodes|3ab|nodes|split2|node}} ∪
{{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪
{{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} ∪
{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_10lru|split2|node}} ∪
{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_01lr|split2|node}} ∪
{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = dual of {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|nodes_11|split2|node_1}}.
Related polytopes and honeycombs
{{7-simplex honeycomb family}}
= Projection by folding =
The 7-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:
class=wikitable |
|{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} |
---|
|{{CDD|node_1|4|node|3|node|3|node|4|node}} |
See also
Regular and uniform honeycombs in 7-space:
Notes
{{reflist}}
References
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley–Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
{{Honeycombs}}