7-simplex honeycomb

{{Short description|7-homeycomb}}

class="wikitable" align="right" style="margin-left:10px" width="300"

!bgcolor=#e7dcc3 colspan=2|7-simplex honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeUniform 7-honeycomb
bgcolor=#e7dcc3|FamilySimplectic honeycomb
bgcolor=#e7dcc3|Schläfli symbol{3[8]} = 0[8]
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}}
bgcolor=#e7dcc3|6-face types{36} 30px, t1{36} 30px
t2{36} 30px, t3{36} 30px
bgcolor=#e7dcc3|6-face types{35} 30px, t1{35} 30px
t2{35} 30px
bgcolor=#e7dcc3|5-face types{34} 30px, t1{34} 30px
t2{34} 30px
bgcolor=#e7dcc3|4-face types{33} 30px, t1{33} 30px
bgcolor=#e7dcc3|Cell types{3,3} 30px, t1{3,3} 30px
bgcolor=#e7dcc3|Face types{3} 30px
bgcolor=#e7dcc3|Vertex figuret0,6{36} 30px
bgcolor=#e7dcc3|Symmetry{\tilde{A}}_7×21, <[3[8]]>
bgcolor=#e7dcc3|Propertiesvertex-transitive

In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

A7 lattice

This vertex arrangement is called the A7 lattice or 7-simplex lattice. The 56 vertices of the expanded 7-simplex vertex figure represent the 56 roots of the {\tilde{A}}_7 Coxeter group.{{Cite web|url=http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A7.html|title = The Lattice A7}} It is the 7-dimensional case of a simplectic honeycomb. Around each vertex figure are 254 facets: 8+8 7-simplex, 28+28 rectified 7-simplex, 56+56 birectified 7-simplex, 70 trirectified 7-simplex, with the count distribution from the 9th row of Pascal's triangle.

{\tilde{E}}_7 contains {\tilde{A}}_7 as a subgroup of index 144.N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294 Both {\tilde{E}}_7 and {\tilde{A}}_7 can be seen as affine extensions from A_7 from different nodes: File:Affine_A7_E7_relations.png

The A{{sup sub|2|7}} lattice can be constructed as the union of two A7 lattices, and is identical to the E7 lattice.

:

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}}.

The A{{sup sub|4|7}} lattice is the union of four A7 lattices, which is identical to the E7* lattice (or E{{sup sub|2|7}}).

:

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} ∪ {{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_10l}} + {{CDD|node|3|node|split1|nodes|3ab|nodes|3ab|nodes_01l}} = dual of {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}.

The A{{sup sub|*|7}} lattice (also called A{{sup sub|8|7}}) is the union of eight A7 lattices, and has the vertex arrangement to the dual honeycomb of the omnitruncated 7-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 7-simplex.

:

{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes_10lur|3ab|nodes|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes_01lr|3ab|nodes|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes_10lr|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes_01lr|3ab|nodes|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_10lru|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes_01lr|split2|node}} ∪

{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|split2|node_1}} = dual of {{CDD|node_1|split1|nodes_11|3ab|nodes_11|3ab|nodes_11|split2|node_1}}.

Related polytopes and honeycombs

{{7-simplex honeycomb family}}

= Projection by folding =

The 7-simplex honeycomb can be projected into the 4-dimensional tesseractic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

class=wikitable
{\tilde{A}}_7

|{{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|split2|node}}

{\tilde{C}}_4

|{{CDD|node_1|4|node|3|node|3|node|4|node}}

See also

Notes

{{reflist}}

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley–Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]

{{Honeycombs}}

Category:Honeycombs (geometry)

Category:8-polytopes