8-cube
{{Short description|8-dimensional hypercube}}
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|8-cube | |
bgcolor=#ffffff align=center colspan=2|285px Orthogonal projection inside Petrie polygon | |
bgcolor=#e7dcc3|Type | Regular 8-polytope |
bgcolor=#e7dcc3|Family | hypercube |
bgcolor=#e7dcc3|Schläfli symbol | {4,36} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}} {{CDD|node_1|2c|node_1|4|node|3|node|3|node|3|node|3|node |
{{CDD|node_1|2c|node_1|2c|node_1|4|node|3|node|3|node|3|node|3|node|}}
{{CDD|node_1|2c|node_1|2c|node_1|2c|node_1|4|node|3|node|3|node|3|node|}}
{{CDD|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|4|node|3|node|3|node|}}
{{CDD|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|4|node|3|node|}}
{{CDD|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|4|node|}}
{{CDD|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1|2c|node_1}}
|-
|bgcolor=#e7dcc3|7-faces||16 {4,35}35px
|-
|bgcolor=#e7dcc3|6-faces||112 {4,34}25px
|-
|bgcolor=#e7dcc3|5-faces||448 {4,33}25px
|-
|bgcolor=#e7dcc3|4-faces||1120 {4,32}25px
|-
|bgcolor=#e7dcc3|Cells||1792 {4,3}25px
|-
|bgcolor=#e7dcc3|Faces||1792 {4}25px
|-
|bgcolor=#e7dcc3|Edges||1024
|-
|bgcolor=#e7dcc3|Vertices||256
|-
|bgcolor=#e7dcc3|Vertex figure||7-simplex 25px
|-
|bgcolor=#e7dcc3|Petrie polygon||hexadecagon
|-
|bgcolor=#e7dcc3|Coxeter group||C8, [36,4]
|-
|bgcolor=#e7dcc3|Dual||8-orthoplex 25px
|-
|bgcolor=#e7dcc3|Properties||convex, Hanner polytope
|}
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces.
It is represented by Schläfli symbol {4,36}, being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the 4-cube) and oct for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets.
It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes.
Cartesian coordinates
Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are
: (±1,±1,±1,±1,±1,±1,±1,±1)
while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 < xi < 1.
As a configuration
This configuration matrix represents the 8-cube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces, and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-cube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.Coxeter, Regular Polytopes, sec 1.8 ConfigurationsCoxeter, Complex Regular Polytopes, p.117
256 & 8 & 28 & 56 & 70 & 56 & 28 & 8
\\ 2 & 1024 & 7 & 21 & 35 & 35 & 21 & 7
\\ 4 & 4 & 1792 & 6 & 15 & 20 & 15 & 6
\\ 8 & 12 & 6 & 1792 & 5 & 10 & 10 & 5
\\ 16 & 32 & 24 & 8 & 1120 & 4 & 6 & 4
\\ 32 & 80 & 80 & 40 & 10 & 448 & 3 & 3
\\ 64 & 192 & 240 & 160 & 60 & 12 & 112 & 2
\\ 128 & 448 & 672 & 560 & 280 & 84 & 14 & 16
\end{matrix}\end{bmatrix}
The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.{{KlitzingPolytopes|../incmats/octo.htm| o3o3o3o3o3o3o4x - octo}}
class=wikitable
!B8 | {{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node_1}} | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | k-figure | notes | |
align=right | A7 | {{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|2|node_x}} | ( )
!f0 |BGCOLOR="#ffe0e0" |256 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | {3,3,3,3,3,3} | B8/A7 = 2^8*8!/8! = 256 | ||
align=right | A6A1 | {{CDD|node|3|node|3|node|3|node|3|node|3|node|2|node_x|2|node_1}} | { }
!f1 | 2 | BGCOLOR="#ffffe0" |1024 | 7 | 21 | 35 | 35 | 21 | 7 | {3,3,3,3,3} | B8/A6A1 = 2^8*8!/7!/2 = 1024 | |
align=right | A5B2 | {{CDD|node|3|node|3|node|3|node|3|node|2|node_x|2|node|4|node_1}} | {4}
!f2 | 4 | 4 | BGCOLOR="#e0ffe0" |1792 | 6 | 15 | 20 | 15 | 6 | {3,3,3,3} | B8/A5B2 = 2^8*8!/6!/4/2 = 1792 | |
align=right | A4B3 | {{CDD|node|3|node|3|node|3|node|2|node_x|2|node|3|node|4|node_1}} | {4,3}
!f3 | 8 | 12 | 6 | BGCOLOR="#e0ffff" |1792 | 5 | 10 | 10 | 5 | {3,3,3} | B8/A4B3 = 2^8*8!/5!/8/3! = 1792 | |
align=right | A3B4 | {{CDD|node|3|node|3|node|2|node_x|2|node|3|node|3|node|4|node_1}} | {4,3,3}
!f4 | 16 | 32 | 24 | 8 | BGCOLOR="#e0e0ff" |1120 | 4 | 6 | 4 | {3,3} | B8/A3B4 = 2^8*8!/4!/2^4/4! = 1120 | |
align=right | A2B5 | {{CDD|node|3|node|2|node_x|2|node|3|node|3|node|3|node|4|node_1}} | {4,3,3,3}
!f5 | 32 | 80 | 80 | 40 | 10 | BGCOLOR="#ffe0ff" |448 | 3 | 3 | {3} | B8/A2B5 = 2^8*8!/3!/2^5/5! = 448 | |
align=right | A1B6 | {{CDD|node|2|node_x|2|node|3|node|3|node|3|node|3|node|4|node_1}} | {4,3,3,3,3}
!f6 | 64 | 192 | 240 | 160 | 60 | 12 | BGCOLOR="#ffe0e0" |112 | 2 | { } | B8/A1B6 = 2^8*8!/2/2^6/6!= 112 | |
align=right | B7 | {{CDD|node_x | 2|node|3|node|3|node|3|node|3|node|3|node|4|node_1}} | {4,3,3,3,3,3}
!f7 | 128 | 448 | 672 | 560 | 280 | 84 | 14 | BGCOLOR="#ffffe0" |16 | ( ) | B8/B7 = 2^8*8!/2^7/7! = 16 |
{{-}}
Projections
class="wikitable" width=240 align=right |
valign=top
|240px |
{{8-cube Coxeter plane graphs|t0|200}}
Derived polytopes
Applying an alternation operation, deleting alternating vertices of the octeract, creates another uniform polytope, called a 8-demicube, (part of an infinite family called demihypercubes), which has 16 demihepteractic and 128 8-simplex facets.
Related polytopes
The 8-cube is 8th in an infinite series of hypercube:
{{Hypercube polytopes}}
References
{{reflist}}
- H.S.M. Coxeter:
- Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, {{ISBN|0-486-61480-8}}, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- {{KlitzingPolytopes|polyzetta.htm|8D uniform polytopes (polyzetta)| o3o3o3o3o3o3o4x - octo}}
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- {{GlossaryForHyperspace | anchor=Measure | title=Measure polytope }}
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary: hypercube] Garrett Jones
{{Polytopes}}