9-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Regular decayotton
(9-simplex)

bgcolor=#ffffff align=center colspan=2|280px
Orthogonal projection
inside Petrie polygon
bgcolor=#e7dcc3|TypeRegular 9-polytope
bgcolor=#e7dcc3|Familysimplex
bgcolor=#e7dcc3|Schläfli symbol{3,3,3,3,3,3,3,3}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
bgcolor=#e7dcc3|8-faces10 8-simplex25px
bgcolor=#e7dcc3|7-faces45 7-simplex25px
bgcolor=#e7dcc3|6-faces120 6-simplex25px
bgcolor=#e7dcc3|5-faces210 5-simplex25px
bgcolor=#e7dcc3|4-faces252 5-cell25px
bgcolor=#e7dcc3|Cells210 tetrahedron25px
bgcolor=#e7dcc3|Faces120 triangle25px
bgcolor=#e7dcc3|Edges45
bgcolor=#e7dcc3|Vertices10
bgcolor=#e7dcc3|Vertex figure8-simplex
bgcolor=#e7dcc3|Petrie polygondecagon
bgcolor=#e7dcc3|Coxeter groupA9 [3,3,3,3,3,3,3,3]
bgcolor=#e7dcc3|DualSelf-dual
bgcolor=#e7dcc3|Propertiesconvex

In geometry, a 9-simplex is a self-dual regular 9-polytope. It has 10 vertices, 45 edges, 120 triangle faces, 210 tetrahedral cells, 252 5-cell 4-faces, 210 5-simplex 5-faces, 120 6-simplex 6-faces, 45 7-simplex 7-faces, and 10 8-simplex 8-faces. Its dihedral angle is cos−1(1/9), or approximately 83.62°.

It can also be called a decayotton, or deca-9-tope, as a 10-facetted polytope in 9-dimensions. The name decayotton is derived from deca for ten facets in Greek and yotta (a variation of "oct" for eight), having 8-dimensional facets, and -on.

Jonathan Bowers gives it acronym day.{{harvnb|Klitzing|at=[https://bendwavy.org/klitzing/incmats/day.htm (x3o3o3o3o3o3o3o3o – day)]}}

Coordinates

The Cartesian coordinates of the vertices of an origin-centered regular decayotton having edge length 2 are:

:\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ \sqrt{1/3},\ \pm1\right)

:\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ \sqrt{1/6},\ -2\sqrt{1/3},\ 0\right)

:\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ \sqrt{1/10},\ -\sqrt{3/2},\ 0,\ 0\right)

:\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ \sqrt{1/15},\ -2\sqrt{2/5},\ 0,\ 0,\ 0\right)

:\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ \sqrt{1/21},\ -\sqrt{5/3},\ 0,\ 0,\ 0,\ 0\right)

:\left(\sqrt{1/45},\ 1/6,\ \sqrt{1/28},\ -\sqrt{12/7},\ 0,\ 0,\ 0,\ 0,\ 0\right)

:\left(\sqrt{1/45},\ 1/6,\ -\sqrt{7/4},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)

:\left(\sqrt{1/45},\ -4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)

:\left(-3\sqrt{1/5},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)

More simply, the vertices of the 9-simplex can be positioned in 10-space as permutations of (0,0,0,0,0,0,0,0,0,1). These are the vertices of one Facet of the 10-orthoplex.

Images

{{A9 Coxeter plane graphs|t0|100}}

References

{{Reflist}}

  • Coxeter, H.S.M.:
  • {{cite book |title-link=Regular Polytopes (book) |author-mask=1 |first=H.S.M. |last=Coxeter |chapter=Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) |title=Regular Polytopes |publisher=Dover |edition=3rd |year=1973 |isbn=0-486-61480-8 |pages=296 }}
  • {{cite book |editor-first=F. Arthur |editor-last=Sherk |editor2-first=Peter |editor2-last=McMullen |editor3-first=Anthony C. |editor3-last=Thompson |editor4-first=Asia Ivic |editor4-last=Weiss |title=Kaleidoscopes: Selected Writings of H.S.M. Coxeter |publisher=Wiley |year=1995 |isbn=978-0-471-01003-6 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PP1}}
  • (Paper 22) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi Regular Polytopes I |journal=Math. Zeit. |volume=46 |pages=380–407 |year=1940 |doi=10.1007/BF01181449 |s2cid=186237114 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA251 |url-access=subscription }}
  • (Paper 23) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes II |journal=Math. Zeit. |volume=188 |pages=559–591 |year=1985 |issue=4 |doi=10.1007/BF01161657 |s2cid=120429557 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA279|url-access=subscription }}
  • (Paper 24) {{cite journal |author-mask=1 |first=H.S.M. |last=Coxeter |title=Regular and Semi-Regular Polytopes III |journal=Math. Zeit. |volume=200 |pages=3–45 |year=1988 |doi=10.1007/BF01161745 |s2cid=186237142 |url=https://books.google.com/books?id=fUm5Mwfx8rAC&pg=PA313|url-access=subscription }}
  • {{cite book |author-link=John Horton Conway |first1=John H. |last1=Conway |first2=Heidi |last2=Burgiel |first3=Chaim |last3=Goodman-Strauss |chapter=26. Hemicubes: 1n1 |title=The Symmetries of Things |year=2008 |isbn=978-1-56881-220-5 |pages=409 }}
  • {{citation |author-link=Norman Johnson (mathematician) |first=Norman |last=Johnson |title=Uniform Polytopes |date=1991 |type=Manuscript }}
  • {{cite thesis |first=N.W. |last=Johnson |title=The Theory of Uniform Polytopes and Honeycombs |date=1966 |type=PhD |publisher=University of Toronto |url=https://search.library.utoronto.ca/details?402790 |oclc=258527038}}
  • {{KlitzingPolytopes|polyyotta.htm|9D uniform polytopes (polyyotta)|x3o3o3o3o3o3o3o3o – day}} {{sfn whitelist|CITEREFKlitzing}}