Azuma's inequality

{{Short description|Theorem in probability theory}}

In probability theory, the Azuma–Hoeffding inequality (named after Kazuoki Azuma and Wassily Hoeffding) gives a concentration result for the values of martingales that have bounded differences.

Suppose \{X_k: k=0,1,2,3,\dots\} is a martingale (or super-martingale) and

:|X_k - X_{k-1}| \leq c_k, \,

almost surely. Then for all positive integers N and all positive reals \epsilon,

:\text{P}(X_N - X_0 \geq \epsilon) \leq \exp\left ({-\epsilon^2 \over 2\sum_{k=1}^N c_k^2} \right).

And symmetrically (when Xk is a sub-martingale):

:\text{P}(X_N - X_0 \leq -\epsilon) \leq \exp\left ({-\epsilon^2 \over 2\sum_{k=1}^N c_k^2} \right).

If X is a martingale, using both inequalities above and applying the union bound allows one to obtain a two-sided bound:

:\text{P}(|X_N - X_0| \geq \epsilon) \leq 2\exp\left ({-\epsilon^2 \over 2\sum_{k=1}^N c_k^2} \right).

Proof

The proof shares similar idea of the proof for the general form of Azuma's inequality listed below. Actually, this can be viewed as a direct corollary of the general form of Azuma's inequality.

A general form of Azuma's inequality

=Limitation of the vanilla Azuma's inequality=

Note that the vanilla Azuma's inequality requires symmetric bounds on martingale increments, i.e. -c_t \leq X_t - X_{t-1} \leq c_t. So, if known bound is asymmetric, e.g. a_t \leq X_t - X_{t-1} \leq b_t, to use Azuma's inequality, one need to choose c_t = \max(|a_t|, |b_t|) which might be a waste of information on the boundedness of X_t - X_{t-1}. However, this issue can be resolved and one can obtain a tighter probability bound with the following general form of Azuma's inequality.

=Statement=

Let \left\{X_0, X_1, \cdots \right\} be a martingale (or supermartingale) with respect to filtration \left\{\mathcal{F}_0, \mathcal{F}_1, \cdots \right\}. Assume there are predictable processes \left\{A_0, A_1, \cdots\right\} and \left\{ B_0, B_1, \dots \right\} with respect to \left\{ \mathcal{F}_0, \mathcal{F}_1, \cdots \right\} , i.e. for all t, A_t, B_t are \mathcal{F}_{t-1}-measurable, and constants 0 such that

:

A_t \leq X_t - X_{t-1} \leq B_t \quad \text{and} \quad B_t - A_t \leq c_t

almost surely. Then for all \epsilon>0,

:

\text{P}(X_n - X_0 \geq \epsilon) \leq \exp \left( - \frac{2\epsilon^2}{ \sum_{t=1}^{n} c_t^2 } \right).

Since a submartingale is a supermartingale with signs reversed, we have if instead \left\{X_0, X_1, \dots \right\} is a martingale (or submartingale),

:

\text{P}(X_n - X_0 \leq -\epsilon) \leq \exp \left(- \frac{2\epsilon^2}{ \sum_{t=1}^{n} c_t^2 } \right).

If \left\{X_0, X_1, \dots \right\} is a martingale, since it is both a supermartingale and submartingale, by applying union bound to the two inequalities above, we could obtain the two-sided bound:

:

\text{P}(|X_n - X_0| \geq \epsilon) \leq 2\exp \left(- \frac{2\epsilon^2}{ \sum_{t=1}^{n} c_t^2 } \right).

=Proof=

We will prove the supermartingale case only as the rest are self-evident. By Doob decomposition, we could decompose supermartingale \left\{X_t\right\} as X_t = Y_t + Z_t where \left\{Y_t, \mathcal{F}_t\right\} is a martingale and \left\{Z_t, \mathcal{F}_t\right\} is a nonincreasing predictable sequence (Note that if \left\{X_t\right\} itself is a martingale, then Z_t = 0). From A_t \leq X_t - X_{t-1} \leq B_t, we have

:

-(Z_t - Z_{t-1}) + A_t

\leq

Y_t - Y_{t-1}

\leq

-(Z_t - Z_{t-1}) + B_t

Applying Chernoff bound to Y_n - Y_0, we have for \epsilon>0,

:\begin{align}

\text{P}(Y_n-Y_0 \geq \epsilon)

& \leq \underset{s>0}{\min} \ e^{-s\epsilon} \mathbb{E} [e^{s (Y_n-Y_0) }] \\

& = \underset{s>0}{\min} \ e^{-s\epsilon} \mathbb{E} \left[\exp \left( s \sum_{t=1}^{n}(Y_t-Y_{t-1}) \right) \right] \\

& = \underset{s>0}{\min} \ e^{-s\epsilon} \mathbb{E} \left[\exp \left( s \sum_{t=1}^{n-1}(Y_t-Y_{t-1}) \right) \mathbb{E} \left[\exp \left( s(Y_n-Y_{n-1}) \right) \mid \mathcal{F}_{n-1} \right] \right]

\end{align}

For the inner expectation term, since

(i) \mathbb{E}[Y_t - Y_{t-1} \mid \mathcal{F}_{t-1}]=0 as \left\{Y_t\right\} is a martingale;

(ii) -(Z_t - Z_{t-1}) + A_t \leq Y_t - Y_{t-1} \leq -(Z_t - Z_{t-1}) + B_t ;

(iii) -(Z_t - Z_{t-1}) + A_t and -(Z_t - Z_{t-1}) + B_t are both \mathcal{F}_{t-1}-measurable as \left\{Z_t\right\} is a predictable process;

(iv) B_t - A_t \leq c_t;

by applying Hoeffding's lemma{{NoteTag|It is not a direct application of Hoeffding's lemma though. The statement of Hoeffding's lemma handles the total expectation, but it also holds for the case when the expectation is conditional expectation and the bounds are measurable with respect to the sigma-field the conditional expectation is conditioned on. The proof is the same as for the classical Hoeffding's lemma.}}, we have

:

\mathbb{E} \left[\exp \left( s(Y_t-Y_{t-1}) \right) \mid \mathcal{F}_{t-1} \right]

\leq

\exp \left(\frac{s^2 (B_t - A_t)^2}{8} \right)

\leq

\exp \left(\frac{s^2 c_t^2}{8} \right).

Repeating this step, one could get

:

\text{P}(Y_n-Y_0 \geq \epsilon)

\leq

\underset{s>0}{\min} \ e^{-s\epsilon} \exp \left(\frac{s^2 \sum_{t=1}^{n}c_t^2}{8}\right).

Note that the minimum is achieved at s = \frac{4 \epsilon}{\sum_{t=1}^{n}c_t^2}, so we have

:

\text{P}(Y_n-Y_0 \geq \epsilon)

\leq

\exp \left(-\frac{2 \epsilon^2}{\sum_{t=1}^{n}c_t^2}\right).

Finally, since X_n - X_0 = (Y_n - Y_0) + (Z_n - Z_0) and Z_n - Z_0 \leq 0 as \left\{Z_n \right\} is nonincreasing, so event \left\{X_n - X_0 \geq \epsilon\right\} implies \left\{Y_n - Y_0 \geq \epsilon\right\}, and therefore

:

\text{P}(X_n-X_0 \geq \epsilon)

\leq

\text{P}(Y_n-Y_0 \geq \epsilon)

\leq

\exp \left(-\frac{2 \epsilon^2}{\sum_{t=1}^{n}c_t^2}\right). \square

=Remark=

Note that by setting A_t = -c_t, B_t = c_t, we could obtain the vanilla Azuma's inequality.

Note that for either submartingale or supermartingale, only one side of Azuma's inequality holds. We can't say much about how fast a submartingale with bounded increments rises (or a supermartingale falls).

This general form of Azuma's inequality applied to the Doob martingale gives McDiarmid's inequality which is common in the analysis of randomized algorithms.

Simple example of Azuma's inequality for coin flips

Let Fi be a sequence of independent and identically distributed random coin flips (i.e., let Fi be equally likely to be −1 or 1 independent of the other values of Fi). Defining X_i = \sum_{j=1}^i F_j yields a martingale with |Xk − Xk−1| ≤ 1, allowing us to apply Azuma's inequality. Specifically, we get

: \operatorname{P}(X_n > t) \leq \exp\left(\frac{-t^2}{2 n}\right).

For example, if we set t proportional to n, then this tells us that although the maximum possible value of Xn scales linearly with n, the probability that the sum scales linearly with n decreases exponentially fast with n.

If we set t=\sqrt{2 n \ln n} we get:

: \operatorname{P}\left(X_n > \sqrt{2 n \ln n}\right) \leq \frac1n,

which means that the probability of deviating more than \sqrt{2 n \ln n} approaches 0 as n goes to infinity.

Remark

A similar inequality was proved under weaker assumptions by Sergei Bernstein in 1937.

Hoeffding proved this result for independent variables rather than martingale differences, and also observed that slight modifications of his argument establish the result for martingale differences (see page 9 of his 1963 paper).

See also

Notes

{{NoteFoot}}

References

  • {{cite book|first1=N. |last1=Alon |first2= J. |last2=Spencer|title=The Probabilistic Method|publisher= Wiley|location=New York|year= 1992}}
  • {{cite journal|doi=10.2748/tmj/1178243286|first=K. |last=Azuma|title=Weighted Sums of Certain Dependent Random Variables|journal=Tôhoku Mathematical Journal|volume=19|pages= 357–367 |year=1967|issue=3|url=http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.tmj/1178243286|format=PDF|mr=0221571|doi-access=free}}
  • {{cite journal| last=Bernstein | first=Sergei N. | authorlink=Sergei Natanovich Bernstein | year=1937 |trans-title=On certain modifications of Chebyshev's inequality | journal=Doklady Akademii Nauk SSSR | volume=17 | issue=6 | pages=275–277 |script-title=ru:О некоторых модификациях неравенства Чебышёва|language=Russian }} (vol. 4, item 22 in the collected works)
  • {{cite book| first=C. |last=McDiarmid|chapter= On the method of bounded differences|title=Surveys in Combinatorics|series= London Math. Soc. Lectures Notes 141|publisher= Cambridge Univ. Press|location= Cambridge |year=1989|pages=148–188|mr=1036755}}
  • {{Cite journal|doi=10.2307/2282952|first1=W. |last1=Hoeffding|title=Probability inequalities for sums of bounded random variables|journal=Journal of the American Statistical Association|volume=58|issue=301|pages= 13–30|year= 1963|mr= 0144363 |jstor=2282952 |url=http://www.lib.ncsu.edu/resolver/1840.4/2170 }}
  • {{Cite book|first1=A. P. |last1=Godbole |first2= P. |last2=Hitczenko |title=Microsurveys in Discrete Probability |chapter=Beyond the method of bounded differences |series=DIMACS Series in Discrete Mathematics and Theoretical Computer Science |volume= 41|pages=43–58|year= 1998 |mr=1630408 |doi=10.1090/dimacs/041/03 |isbn=9780821808276 }}

Category:Probabilistic inequalities

Category:Martingale theory