Bell diagonal state

{{Short description|Quantum states of two qubits}}

{{Orphan|date=April 2023}}

{{Quantum mechanics}}

Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.{{Cite journal |last1=Horodecki |first1=Ryszard |last2=Horodecki |first2=Paweł |last3=Horodecki |first3=Michał |last4=Horodecki |first4=Karol |date=2009-06-17 |title=Quantum entanglement |url=https://link.aps.org/doi/10.1103/RevModPhys.81.865 |journal=Reviews of Modern Physics |volume=81 |issue=2 |pages=865–942 |doi=10.1103/RevModPhys.81.865|arxiv=quant-ph/0702225 |bibcode=2009RvMP...81..865H |s2cid=260606370 }}

Definition

The Bell diagonal state is defined as the probabilistic mixture of Bell states:

: |\phi^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)

: |\phi^-\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B - |1\rangle_A \otimes |1\rangle_B)

: |\psi^+\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |0\rangle_B)

: |\psi^-\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B)

In density operator form, a Bell diagonal state is defined as

\varrho^{Bell}=p_1|\phi^+\rangle \langle \phi^+|+p_2|\phi^-\rangle\langle \phi^-|+p_3|\psi^+\rangle\langle \psi^+|+p_4|\psi^-\rangle\langle\psi^-|

where p_1,p_2,p_3,p_4 is a probability distribution. Since p_1+p_2+p_3+p_4=1, a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as p_{max}=\max\{p_1,p_2,p_3,p_4\}.

Properties

1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e., p_\text{max}\leq 1/2.{{Cite journal |last1=Horodecki |first1=Ryszard |last2=Horodecki |first2=Michal/ |date=1996-09-01 |title=Information-theoretic aspects of inseparability of mixed states |url=https://link.aps.org/doi/10.1103/PhysRevA.54.1838 |journal=Physical Review A |volume=54 |issue=3 |pages=1838–1843 |doi=10.1103/PhysRevA.54.1838|pmid=9913669 |arxiv=quant-ph/9607007 |bibcode=1996PhRvA..54.1838H |s2cid=2340228 }}

2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:

Relative entropy of entanglement: S_r=1-h(p_\text{max}),{{Cite journal |last1=Vedral |first1=V. |last2=Plenio |first2=M. B. |last3=Rippin |first3=M. A. |last4=Knight |first4=P. L. |date=1997-03-24 |title=Quantifying Entanglement |url=https://link.aps.org/doi/10.1103/PhysRevLett.78.2275 |journal=Physical Review Letters |volume=78 |issue=12 |pages=2275–2279 |doi=10.1103/PhysRevLett.78.2275|arxiv=quant-ph/9702027 |bibcode=1997PhRvL..78.2275V |hdl=10044/1/300 |s2cid=16118336 }} where h is the binary entropy function.

Entanglement of formation: E_f=h(\frac{1}{2}+\sqrt{p_\text{max}(1-p_\text{max})}),where h is the binary entropy function.

Negativity: N=p_\text{max}-1/2

Log-negativity: E_N=\log(2 p_\text{max} )

3. Any 2-qubit state where the reduced density matrices are maximally mixed, \rho_A=\rho_B=I/2, is Bell-diagonal in some local basis. Viz., there exist local unitaries U=U_1\otimes U_2 such that U\rho U^{\dagger} is Bell-diagonal.

References

{{reflist}}

{{DEFAULTSORT:Bell diagonal states}}

Category:Quantum information science

Category:Quantum states