Bell diagonal state
{{Short description|Quantum states of two qubits}}
{{Orphan|date=April 2023}}
{{Quantum mechanics}}
Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.{{Cite journal |last1=Horodecki |first1=Ryszard |last2=Horodecki |first2=Paweł |last3=Horodecki |first3=Michał |last4=Horodecki |first4=Karol |date=2009-06-17 |title=Quantum entanglement |url=https://link.aps.org/doi/10.1103/RevModPhys.81.865 |journal=Reviews of Modern Physics |volume=81 |issue=2 |pages=865–942 |doi=10.1103/RevModPhys.81.865|arxiv=quant-ph/0702225 |bibcode=2009RvMP...81..865H |s2cid=260606370 }}
Definition
The Bell diagonal state is defined as the probabilistic mixture of Bell states:
:
:
:
:
In density operator form, a Bell diagonal state is defined as
where is a probability distribution. Since , a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as .
Properties
1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e., .{{Cite journal |last1=Horodecki |first1=Ryszard |last2=Horodecki |first2=Michal/ |date=1996-09-01 |title=Information-theoretic aspects of inseparability of mixed states |url=https://link.aps.org/doi/10.1103/PhysRevA.54.1838 |journal=Physical Review A |volume=54 |issue=3 |pages=1838–1843 |doi=10.1103/PhysRevA.54.1838|pmid=9913669 |arxiv=quant-ph/9607007 |bibcode=1996PhRvA..54.1838H |s2cid=2340228 }}
2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:
Relative entropy of entanglement: ,{{Cite journal |last1=Vedral |first1=V. |last2=Plenio |first2=M. B. |last3=Rippin |first3=M. A. |last4=Knight |first4=P. L. |date=1997-03-24 |title=Quantifying Entanglement |url=https://link.aps.org/doi/10.1103/PhysRevLett.78.2275 |journal=Physical Review Letters |volume=78 |issue=12 |pages=2275–2279 |doi=10.1103/PhysRevLett.78.2275|arxiv=quant-ph/9702027 |bibcode=1997PhRvL..78.2275V |hdl=10044/1/300 |s2cid=16118336 }} where is the binary entropy function.
Entanglement of formation: ,where is the binary entropy function.
3. Any 2-qubit state where the reduced density matrices are maximally mixed, , is Bell-diagonal in some local basis. Viz., there exist local unitaries such that is Bell-diagonal.