Bernstein's problem

{{Short description|Problem in differential geometry}}

{{about||Bernstein's problem in mathematical genetics|Genetic algebra|Bernstein's Degrees-of-Freedom problem in motor control|Degrees of Freedom Problem (Motor Control)|its possible generalization in global differential geometry|spherical Bernstein's problem}}

In differential geometry, Bernstein's problem is as follows: if the graph of a function on Rn−1 is a minimal surface in Rn, does this imply that the function is linear?

This is true for n at most 8, but false for n at least 9. The problem is named for Sergei Natanovich Bernstein who solved the case n = 3 in 1914.

Statement

Suppose that f is a function of n − 1 real variables. The graph of f is a surface in Rn, and the condition that this is a minimal surface is that f satisfies the minimal surface equation

:\sum_{i=1}^{n-1} \frac{\partial}{\partial x_i}\frac{\frac{\partial f}{\partial x_i}}{\sqrt{1+\sum_{j=1}^{n-1}\left(\frac{\partial f}{\partial x_j}\right)^2}} = 0

Bernstein's problem asks whether an entire function (a function defined throughout Rn−1 ) that solves this equation is necessarily a degree-1 polynomial.

History

{{harvtxt|Bernstein|1915–1917}} proved Bernstein's theorem that a graph of a real function on R2 that is also a minimal surface in R3 must be a plane.

{{harvtxt|Fleming|1962}} gave a new proof of Bernstein's theorem by deducing it from the fact that there is no non-planar area-minimizing cone in R3.

{{harvtxt|De Giorgi|1965}} showed that if there is no non-planar area-minimizing cone in Rn−1 then the analogue of Bernstein's theorem is true for graphs in Rn, which in particular implies that it is true in R4.

{{harvtxt|Almgren|1966}} showed there are no non-planar minimizing cones in R4, thus extending Bernstein's theorem to R5.

{{harvtxt|Simons|1968}} showed there are no non-planar minimizing cones in R7, thus extending Bernstein's theorem to R8. He also showed that the surface defined by

:\{ x \in \mathbb{R}^8 : x_1^2+x_2^2+x_3^2+x_4^2=x_5^2+x_6^2+x_7^2+x_8^2 \}

is a locally stable cone in R8, and asked if it is globally area-minimizing.

{{harvtxt|Bombieri|De Giorgi|Giusti|1969}} showed that Simons' cone is indeed globally minimizing, and that in Rn for n≥9 there are graphs that are minimal, but not hyperplanes. Combined with the result of Simons, this shows that the analogue of Bernstein's theorem is true in Rn for n≤8, and false in higher dimensions.

See also

References

  • {{Citation | last1=Almgren | first1=F. J. | author1-link=Frederick J. Almgren Jr. | title=Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem | jstor=1970520 | mr=0200816 | year=1966 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=84 | issue=2 | pages=277–292 | doi=10.2307/1970520}}
  • {{Citation | last1=Bernstein | first1=S. N. | author1-link=Sergei Natanovich Bernstein | title=Sur une théorème de géometrie et ses applications aux équations dérivées partielles du type elliptique | year=1915–1917 | journal=Comm. Soc. Math. Kharkov | volume=15 | pages=38–45}} German translation in {{Citation | last1=Bernstein | first1=Serge | title=Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus | doi=10.1007/BF01475472 | publisher=Springer Berlin / Heidelberg | language=German | year=1927 | journal=Mathematische Zeitschrift | issn=0025-5874 | volume=26 | pages=551–558}}
  • {{Citation | last1=Bombieri | first1=Enrico | author1-link=Enrico Bombieri | last2=De Giorgi | first2=Ennio | author2-link=Ennio De Giorgi | last3=Giusti | first3=E. | author3-link=Enrico Giusti | title=Minimal cones and the Bernstein problem | doi=10.1007/BF01404309 | mr=0250205 | year=1969 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=7 | issue=3 | pages=243–268| bibcode=1969InMat...7..243B | s2cid=59816096 }}
  • {{Citation | last1=De Giorgi | first1=Ennio | author1-link=Ennio De Giorgi | title=Una estensione del teorema di Bernstein | url=http://www.numdam.org/item?id=ASNSP_1965_3_19_1_79_0 | mr=0178385 | year=1965 | journal=Ann. Scuola Norm. Sup. Pisa (3) | volume=19 | pages=79–85}}
  • {{Citation | last1=Fleming | first1=Wendell H. | author1-link=Wendell Fleming | title=On the oriented Plateau problem | doi=10.1007/BF02849427 | mr=0157263 | year=1962 | journal=Rendiconti del Circolo Matematico di Palermo. Serie II | issn=0009-725X | volume=11 | pages=69–90}}
  • {{eom|id=b/b015750|title=Bernstein theorem|first=I. Kh. |last=Sabitov}}
  • {{Citation | last1=Simons | first1=James | author1-link=James Harris Simons | title=Minimal varieties in riemannian manifolds | jstor=1970556 | mr=0233295 | year=1968 | journal=Annals of Mathematics |series=Second Series | issn=0003-486X | volume=88 | issue=1 | pages=62–105 | doi=10.2307/1970556| url=https://www.jstor.org/stable/1970556 }}
  • {{eom|id=b/b110360|title=Bernstein problem in differential geometry|first=E. |last=Straume}}